
Automating the process of building flexible
Web Warehouses with BPM Systems

Andrea Delgado, Adriana Marotta
Instituto de Computación, Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

{adelgado, amarotta}@fing.edu.uy

Abstract—The process of building Data Warehouses (DW) is
well known with well defined stages but at the same time, mostly
carried out manually by IT people in conjunction with business
people. Web Warehouses (WW) are DW whose data sources are
taken from the web. We define a flexible WW, which can be
configured accordingly to different domains, through the
selection of the web sources and the definition of data processing
characteristics. A Business Process Management (BPM) System
allows modeling and executing Business Processes (BPs)
providing support for the automation of processes. To support
the process of building flexible WW we propose a two BPs level:
a configuration process to support the selection of web sources
and the definition of schemas and mappings, and a feeding
process which takes the defined configuration and loads the data
into the WW. In this paper we present a proof of concept of both
processes, with focus on the configuration process and the
defined data.

Keywords—Data Warehouses (DW), Web Warehouses (WW),
building process, Business Process Management Systems (BPMS)

I. INTRODUCTION
In last years the amount of data generated on the web has

grown considerably, being one of the current key challenges to
be able to effectively collect and analyze it, in order to gain
usable information. In this context, Web Warehouses (WW)
are Data Warehouses (DW) whose data sources are taken from
the web. They are a valuable tool for analysis and decision
making based for example, on open government data [1], in
many different areas. We define a flexible WW, which can be
configured accordingly to different domains, through the
selection of the corresponding web sources and the definition
of data processing characteristics. This WW is implemented
through a general platform that is configured for each domain,
or particular case it will be used. The general platform is built
according to an architecture that is suitable for different WWs
[2]. Although the process of building DW is well known with
well defined stages, it is still mostly carried out manually by IT
people in conjunction with business people.

Business Process Management Systems (BPMS) [3]
provide tool support for the Business Process Management
(BPM) [3][4][5] vision in organizations. This kind of software
integrates different tools to support the complete BPs lifecycle
[3], mainly modeling BPs and executing them in a compatible
process engine. One of the many benefits associated with this
vision is that BP models provide an explicitly view on which

activities are performed to reach the organization goals, how
things are done by whom, when and using and generating
which artifacts. Nowadays, one of the most used notations for
modeling and executing BPs is the Business Process Model
and Notation (BPMN 2.0) [6] standard from OMG, which
provides not only a notation for modeling BPs but also a
defined semantic for its elements, making it also executable.
Also, it is easily understandable by business people and it has
been embraced both at the academic and industry level as a
way to communicate between business and IT people [7].

Based on the previous analysis, we propose a two Business
Process (BPs) level vision to help define and automate the
process of building flexible WW: at the first level a
configuration process to support the selection of web sources
and the definition of schemas and mappings, which is mostly
carried out manually, and at the second level, a feeding process
which takes the defined configuration and loads the data into
the WW, which is performed mostly automatically. Both the
configuration and the feeding processes are modeled as BPs in
the BPMN 2.0 notation and executed in the BPMS Activiti [8].
We have selected it mainly because it implements the BPMN
2.0 standard and it is open source. In previous work [9] we
have presented the initial idea of building a Quality-aware WW
with BPs in BPMN 2.0, and since then we have split the
proposal into two projects mainly corresponding to the two
process defined: the first one to define, model and execute the
complete configuration process, which we have worked on last
year, and the second one to define, model and execute the
feeding process based on configuration data, adding quality
data to both processes, in which we are working now. Data
quality is taken into account when building the WW, to obtain
information about the quality of data provided to the user, and
to improve quality of data throughout the WW process.

In this paper we present the complete configuration process
along with the analysis and definitions we have taken, to
provide automated support to the configuration BP and data
that will be used by the feeding process in order to effectively
load the WW. We also present a proof of concept of the
Feeding process to validate the configuration BP. The rest of
the document is organized as follows: in section II we present
some concepts regarding WW, BPs and BPMS, in section III
we describe in detail the BPs we have defined to support the
WW building process, in section IV we present a case study
with open data to illustrate the application of our proposal, in
section V we discuss related work and finally in section VI we
present some conclusions and current and future work.

This work has been partially funded by Comisión Sectorial de
Investigación Científica (CSIC) from Universidad de la República,
Montevideo, Uruguay.

2015 XLI Latin American Computing Conference (CLEI)

978-1-4673-9143-6/15/$31.00 c©2015 IEEE

II. WW AND BUSINESS PROCESSES
In this section we introduce concepts regarding WW and

BPs that are used throughout the proposal.

A. Processes to build flexible WWs
The WW we define is a system that consists of several

components and is service oriented. Fig. 1 shows its
architecture. The system components are in charge of the main
tasks that are necessary to adequately process web data and
provide them to the user for analysis. These tasks are always
present in this kind of systems, but there are many aspects of
them that should be solved and implemented in different ways,
according to the needs of the particular case. An effective
mechanism for encapsulating the solution to the different
aspects, is through the utilization of specialized services. The
utilization of services facilitates the configuration of the
system, contributing to the flexibility of its building.

Fig. 1. Quality-Aware WW General Architecture

The system components are: Extraction, Integration,
Transformation & Loading, OLAP (On-Line Analytical
Processing), Data Quality Measurement (DQM) and DW
Quality Measurement (DWQM).

The Service Infrastructure layer offers the different
available specialized services, which include data services, data
quality services and integration services.

The Extraction component must solve the problem of
format heterogeneity, since data can be found in a variety of
formats, such as csv, html, xml, rdf, etc. It must be able to
extract from each source a pre-defined set of items and store
them into a database, assuring that each data item goes to the
right place. The Integration component must perform the
integration of data coming from the different web sources,
solving the problems of entity resolution and data conflicts,
with the presence of semantic heterogeneity. The
Transformation & Loading component transforms data to the
multidimensional model, preparing them to OLAP
manipulation. The OLAP component manages the data cubes
allowing the multidimensional data analysis through front-end
utilities.

DQM component is in charge of measuring data quality of
data that have been just extracted from the web, while DWQM

component is in charge of measuring data quality of the DW.
These components register data quality information in the
databases DQ1, DQ2, and DQ3, which contain quality
information about the WW data (DQMetadata).

The described components base their solutions on the
invocation of the services offered by the Service Infrastructure
layer.

DQMetadata is read by the WW processes in order to take
quality issues into account when treating data. On the other
hand, it is written by them for enabling the propagation of the
quality metadata throughout the different stages of the data
transformation. This is necessary in order to maintain the
correspondence between quality information and WW data,
when WW data is combined and transformed.

As previously explained, the flexible WW we propose
consists of a configurable platform, such that, in order to build
a specific WW, two phases must be carried out: the
configuration phase and the feeding phase.

In the configuration phase different activities are applied in
order to configure each WW component. The main
configuration activities for the Extraction component are: (1)
selecting domain and web sources, (2) defining the sources
schemas, (3) defining data mappings, and (4) selecting data
services for sources data extraction. For the Integration
component, they are: (1) integrated schema definition, (2)
schema mappings specifications, and (3) selecting integration
services. The Transformation & Loading component
configuration consists in the implementation of the
transformation process, while OLAP component configuration
is done by defining the OLAP cubes. Finally, the main
configuration activities for DQM and DWQM components are:
(1) defining data quality model for extracted data, (2) defining
data quality model for DW data, (3) defining data quality
metadata, and (4) selecting data quality services.

In the feeding phase the WW configured components will
automatically load and build the specific WW, executing the
corresponding extraction, integration and transformation
processes, managing data quality throughout the building
process.

B. BPs, BPMN 2.0 and BPM Systems
BPs provide an horizontal vision of the organization,

showing explicitly the sequence of activities and different
options of execution that are performed to provide value to the
business in an organizational and technical environment [3].
BPM [3][4][5] provides the means to support this horizontal
vision based on the BPs lifecycle [3] and different tools
integrated in BPMS, to help carrying out the activities that are
defined within each phase. The core of these BPMS is a
process engine, which allows executing the BP model driving
the execution of the system, in which are known as Process
Aware Information Systems (PAIS) [10]. Since the definition
of workflows in the nineties decade and web services in early
two thousands, the definition and execution of processes has
been carried out in languages such as XPDL[11] and WS-
BPEL[12], among other proposals. BPMN 2.0 allows not only
modeling BPs with a notation that is understood by business

2015 XLI Latin American Computing Conference (CLEI)

people, but also executing the same model, helping to
minimize errors from requirements to development, and
helping business and IT people to work together. BPMN 2.0
defines elements that are needed to model BPs, including
activities (sub-processes and tasks), gateways (AND, XOR,
OR), events (time, message, etc.), swimlanes (pools and lanes),
data, connectors, among others.

Regarding BPs execution in BPMS, the process engine that
executes BP models can be seen as an intermediate layer
between the user interface (mostly a Web Portal) and the
implementation of the BP (mostly in Java with elements from
the Java world). The process engine then controls, at any given
time, which activity is done by whom, presenting the
corresponding elements to the user (managing the so called
working list) and/or performing the invocations to classes,
following the defined BP's control flow. In the case of user
tasks, the execution of the process engine will send it and
present it to the inbox associated with the role defined (or user
depending on the assignment e.g. algorithms for load balancing
or other criteria). In the case of automated tasks the execution
of the process engine will perform the invocations to the
classes, external systems, Web Services (WS) or other defined
components, such as a business rules engine. In Fig. 2 we
present examples for different execution scenarios in a process
engine: user task, service task and business rule task.

User Task

Service Task Business Rule Task

Business Process engine

S1 S2

Fig. 2 Different types of execution in a BPMS

III. AUTOMATED SUPPORT FOR THE WW CONFIGURATION
The configuration BP is a key step in building a flexible

WW, in which the user defines all the data that will be used in
the feeding process to actually generate the WW. The
configuration data is registered by the system in our own data
model in which we have defined key elements we need to
further generate the WW.

A. WW configuration process
The aim of the configuration process of the WW is to

gather from the user and register in the configuration data base
the data that will allow to carry out the ETL for the DW in the
feeding process. Then, defining the WW configuration
involves things such as selecting the web sources from which
to gather the data, defining the schemas that will be used

(expected schema, integrated schema and data warehouse
schema), as well as the mappings between their elements that
are needed to guide the extraction, selection and integration of
data in each step of the feeding process. The WW
configuration process we have defined is mainly focused on
supporting the definition of schemas and correspondences
between their elements as shown in Fig. 3.

Fig. 3 Definition of schemas and their correspondence

We define a conceptual sub-process that will be used
throughout the configuration BP for each schema creation and
corresponding mappings, in which in the first place, the user is
asked to define the target schema, and then to define the
corresponding mappings to the origin schema (or file in the
case of the web sources). Fig. 4 shows graphically this
conceptual sub-process.

Fig. 4. Conceptual process to define schemas and mappings

Fig. 5 presents the WW configuration process specified in
BPMN 2.0 and implemented in the Activiti BPMS. It defines
two lanes one for the Domain Expert and the other for the IT
professional, which are responsible for the activities defined.
The first three tasks correspond to: 1) "Select Domain" for the
selection of the WW domain, 2) "Select Web Source" for the
selection of existing web sources already registered for the
selected domain, and 3) "Create Web Source" for the creation
and register of new web sources for the selected domain. Some
key domains and corresponding web sources will be already
registered in the configuration database for the users to select.
If when defining the configuration for a WW the user
considerers that the existing web sources are enough,
indicating so in the corresponding task 2), the creation of new
web sources for the domain will be skipped.

2015 XLI Latin American Computing Conference (CLEI)

Fig. 5. WW configuration process specified in BPMN 2.0 and implemented in Activiti BPMS

Once these tasks are finished, the system has registered the
WW domain and the associated web sources that will provide
the data for the WW. The rest of the configuration process will
define the way in which the data will be extracted from the
web sources, the different schemas that will be defined and
used within the process steps, along with the corresponding
mappings to select and/or integrate the data.

The first definition of schemas and mappings is
encapsulated in the sub-process 4) "Define expected Schema
and mapping", which follows the conceptual process as shown
in Fig. 4. In this sub-process, for each selected web source the
expected schema into which the extracted data will be loaded is
defined, along with the corresponding mappings between fields
in the web source file and attributes in the expected schema.
This sub-process is shown in Fig. 6 (a), where three options to
define and use an expected schema are provided. In the first
place, an existing expected schema can be selected, the second
option allows the user to create it automatically uploading a
JSON file containing the definition of the schema, and finally,
creating the schema from scratch manually by the user. To do
so, data regarding the table name, attribute name and type, for
each element defined has to be entered. To continue the loop
the flag "Add More Attributes" can be marked, until there are
no more attributes and/or tables to define.

In the three options, the expected schema that is created is
associated with the selected web source for the current
configuration. In the first and second options, the automated
task "Process expected schema" is executed, to perform the
association or to parse the JSON file to create the expected
schema and the association, in the third case the user must
define the expected schema in a loop that can be executed until

the user indicates to finish the creation. In any case the
expected schema must have a name, attributes and their types.

Following the conceptual process shown in Fig. 4, the next
step is to define the mappings between the expected schema
and the selected web source. To do so, two options are
provided: if the web source has a format that is known by the
system (e.g. HTML, CSV) the user is presented with the
existing column names in the file, if the format is not known by
the system, then the user has to manually register each column
of the web source file. In any case, the correspondence
between columns in the expected schema and columns in the
web source has to be defined manually by the user in the task
"Mapping expected schema and web source". At the end of the
sub-process, the task "Upload Data service" allows the user to
define the Data Service (DS) in charge of actually extracting
the data from the selected web source in the feeding process.
The user form will show a default DS (registered in the system
for the format of the selected web source) and the user will be
able to change it by selecting another URL for the DS.

The next definition of schemas and mappings correspond to
the integrated schema to join the data from the web sources,
which is encapsulated in the sub-process 5) "Define integrated
schema and mapping" and shown in Fig. 6 (b). To do so, the
user has to create each table and the corresponding attributes,
which again can be done automatically by uploading a JSON
with the schema or manually defining each table and attributes
in a loop, until the user selects to finish the creation. For each
table the primary keys are marked, generating an initial
definition of the Integrated Schema, which is then shown to the
user and afterwards with this information, the foreign keys can
be marked for each table to finish the creation of the schema.

2015 XLI Latin American Computing Conference (CLEI)

Fig. 6. Sub-process to define: (a) expected schemas for each web source and corresponding mappings, (b) integrated schema

At this point we have defined the web sources from where
to extract the data which will be placed into the Expected
Schemas and then will be joined into the Integrated Schema.
To do so and following the conceptual process as presented in
Fig. 4, to end with these definitions, the user has to define the
mappings between the Expected Schema for each web source
and the Integrated Schema that he/she has just defined. To
define the mappings the system will show the user with a form
in which for each table from the Integrated Schema, it will
present each time an existing attribute which the user should
associate with an attribute from any of the defined Expected
Schemas. This is done in a loop until all attributes of all tables
in the Integrated Schema has been mapped. In this case other
information has to be gathered from the user, regarding which
joins are needed between which tables in the defined Expected
Schemas, to be able to load the data into the corresponding
ones in the Integrated Schema in the feeding process. The task
6) "Define joins Integrated Schema" allows the user to define t
his information.

The final step involves the definition of the DW Schema,
from the tables defined in the Integrated Schema. This is done
in the sub-process 7) "Define DW Schema and mapping"
which also follows the conceptual process as presented in Fig.
4 and is analogous to the definition of the Integrated Schema
shown in Fig. 6 (b). In this case, apart from defining each table
and the corresponding attributes (which again can be done
automatically by uploading a JSON with the schema or
manually defining each table and attributes in a loop), the user
has to mark fact tables, and the other will be dimensions. After
that, for each table the primary keys are marked, generating an
initial definition of the DW Schema, which is then shown to
the user and afterwards with this information, the foreign keys
can be marked for each fact table to finish the creation of the
DW schema. In this case other information is also required,
regarding the joins that are needed between the tables in the
defined Integrated Schema to be able to load the data into the
corresponding ones in the DW Schema in the feeding process.
The task 8) "Define joins DW Schema" allows the user to
define this information, as in the previous definition.

The configuration data that is gathered from the user along
the configuration process is stored in the Configuration
Database in our own defined data model, to be read during the
feeding process to guide it. In Fig. 7 we present some of the
key tables, attributes and relationships we have defined in our
configuration data model. At the center of the definitions there
is a table named "Configuration" to hold the data for each
configuration, with an id and the domain selected by the user.
Key defined tables refer to the source and target schemas en
each moment of the configuration BP (i.e. web sources,
expected schemas, integrated schema and DW schema), and
the mappings between them that will allow to automate the
load the corresponding data in the feeding process.

As an example of each triple defined for the schema and
mappings (source schema, target schema and mapping), in Fig.
7 it can be seen that the resulting DW Schema is registered in
the Table "dw_schema" which has as attributes the name for
the Schema, the reference to the configuration and the name of
each table defined, with the mark of fact table or not. The table
"atributos_dw_schema" defines each attribute within each table
in the schema, referring the previous table primary key, and
adding the name of each attribute defined in each table. This
pair of tables models the target schema in this last triple. The
source table corresponds to the Integrated Schema and is
defined in the same way in the "integrated_schema" and
"atributos_integrated_schema" tables.

Finally, the mapping is stored in the table "mapping_dw"
which refers to each attribute tables (source and target) in the
corresponding configuration. As model in the configuration BP
following the conceptual process presented in Fig. 4, mappings
are defined at the attribute level between each attribute of the
target schema to attributes in the source schema, until all have
been defined. This same design applies for the mapping
regarding the triple Integrated Schema, Expected Schemas and
mapping between them, and similarly (adding some extra
needed elements) regarding the triple Expected Schema, Web
Sources and mapping between them.

2015 XLI Latin American Computing Conference (CLEI)

Fig. 7 Key tables defined in the configuration data model

B. WW feeding process using configuration data
Once the configuration process has finished, all the relevant

configuration data is stored in the Configuration Database. At
this stage, the WW is ready to be generated and fed. In the
feeding process each component is executed as shown in Fig.
1, but the first step each one executes is the query to the
Configuration Database. Fig. 8 shows the examples of the
Extraction and the Data Quality Measurement (DQM)
processes.

Fig. 8. WW Feeding – Extraction and DQM example

In the case of the Extraction process, it extracts from the
Configuration Database the data sources URLs, the
identification of the data services that extract data from these
URLs, and the expected schema that has to be filled and stored
in the target databases. In the case of the DQM process, it
queries the Configuration Database in order to obtain the data
quality model (quality dimensions and metrics to be applied),
the data quality services to invoke, and the data quality
metadata identification. The quality data is not yet integrated
into the configuration process. Analogously, the other
components obtain the needed information from the
Configuration Database and execute the corresponding data
processing. However, the feeding process is not yet completely
defined as there are many data integration issues that need to
be addressed to complete its automation.

Fig. 9 shows the proof of concept of the Feeding process
we have developed in order to validate the configuration BP
and data defined. It can be seen that differently to the
configuration BP, most tasks in this process are automatic of
type service task, and only a few remain of type user task. This
is due to the focus of the process in reading the already
registered configuration data, create the needed schemas and
perform the Extraction, Transformation and Load (ETL)
processes in order to automatically generate the DW. Most of
the user tasks are defined to present information to the user in
case of integration problems, execution problems and to
approve the generation of the final DW schema and data load.

2015 XLI Latin American Computing Conference (CLEI)

Fig. 9. Proof of concept of the Feeding process to validate the configuration BP and data defined

IV. CASE STUDY WITH OPEN DATA
There is a considerable amount of information published as

open government data in the Tourism domain, in Uruguay.
Several datasets that contribute to touristic information,
published by different organisms, can be found. In this case we
generate a WW where data about events in different places of
the country are analyzed together with data about
accommodation and transport useful for assistants to the
events. The analysis may be done by dates. The analysis
indicators are the quantity of events and the quantity of
accommodation places. Fig. 10 presents the conceptual
multidimensional model for this analysis, following the model
of [13]. As most of the available data is in Spanish we will
present the equivalence between the concepts from the design
of the WW presented here and the ones actually used in the
execution of the processes in next subsections.

Fig. 10. Conceptual multidimensional model for Events fact.

The dimensions in this DW are: (i) Transport-service, with
two hierarchies (Service-time and Service-company), each one
containing two levels, (ii) Accommodation, with one hierarchy
(Type), containing two levels, (iii) Location-city, with one

hierarchy (City-Region) of two levels, and (iv) Date, with one
hierarchy (Date groups) which contains three levels. The DW
measures are Qty-events and Qty-accommodation. Fig. 11
presents the logical schema of the target DW.

Fig. 11. Logical DW schema.

The main data sources are open data publications from
public organisms, although some data (proportionally very
few) had to be generated by us. Accommodation data are
obtained from publications of the Government Agency of
Tourism and Sport (original name: “Ministerio de Turismo y
Deporte”) [14], transport data from publications of the National
Transport Unit (original name: “Dirección Nacional de
Transporte”) [15], some data about events are obtained from
publications of Municipality of Durazno City (original name:
“Intendencia de Durazno”) [16].

We describe in detail the Accommodation data processing
starting from the web sources. The selected Accommodation
data was about Hotels, Hostels and Campings. These three
datasets are published in three different web pages of the same
site. The data published in the three cases are: identifier, name,
address, city, region, phone, cellular phone, web, mail,
coordinates. In the case of Hotels they also publish a category
data item.

2015 XLI Latin American Computing Conference (CLEI)

For our WW we define the expected schema shown in Fig.
12 (a). This is the expected schema for the three sources, i.e. it
specifies the data we require from each of these sources.
Mappings between the expected schema attributes and the web
sources items are defined during the configuration phase such
that the loading from the sources to the target databases can be
performed. For example, accommodationId is mapped to the
identifier of the hotels source data, and analogously with the
hostels and campings sources. The whole integrated schema is
shown in Fig.12 (b). Note that in this schema, Accommodation
table has a new attribute named type, which will contain one of
the values: “hotel”, “hostel” and “camping”.

Fig. 12. (a) Expected schema for Accommodation data, (b) Logical Integrated

schema.

Integrated schema attributes are mapped to expected
schema attributes as shown in Fig. 13. In this case the attribute
called type is not mapped. In the feeding phase the value for
this attribute will be asked to the user.

Fig. 13. Mappings between Integrated and Expected schema.

In addition, mappings between the Integrated schema and the
DW schema must be performed. Fig. 14 shows only the
mappings between the Accommodation table attributes and the
DW attributes due to visualization restrictions. Fact-events
attributes’ mappings are as follows:

• date Events.date,

• serviceId Transport.serviceId,

• accommodationId Accommodation.acommodationId,

• city Accommodation.city,

• city Events.city,

• city Transport.city.

It is important to note that the city attribute of the DW schema
is mapped to the three tables of the Integrated schema. This is
especially important for the feeding phase, since the city
determines which combinations of transport service,
accommodation and events must be generated.

Fig. 14. Mappings between the DW and the Integrated schema.

A. Execution of the WW Configuration process
As an example of the execution of the WW Configuration

process we have implemented, we present some screenshots of
the forms defined to input the configuration data by the user. In
the first place, after selecting the domain for the current
configuration, the user selects the Web Sources that will be
used to extract the data to feed the DW. In Fig. 15 (a) the
corresponding Activiti form for the user task is presented,
showing the possible selection of existing Web Sources for the
seleected domain such as Accomodation (albergues_web,
campings_web, hotels not shown), Events (eventos_web) and
Transport (transport_web), and Regions (departamentos_web)
which finally was not selected. As it can be seen, we present
five Web Sources per form (due to Activiti limitations) and the
option to continue selecting (which is not shown) to perform
the loop and present again the form. We also provide the
options for creating new and/or adding existing Web Sources.

After selecting the Web Sources, as defined in the
configuration BP, the Data Sources are provided, the Expected
Schemas and corresponding mappings to the Web Sources are
defined. To create the Expected Schemas, a form is presented
to the user to define the attributes and corresponding types, as
shown in Fig. 15 (b). As it can be seen, for each Web Source
an Expected Schema has to be created, from scratch or
selecting already existing ones. In this case we show the
selection of the Web Source "hoteles1" which will be mapped
to the Expected Schema Accomodation (hoteles_expected) as
presented in Fig. 12 (address = direccion, city = ciudad). We
present in each form five attributes to be defined with their
name and type, and the option to continue creating attributes

2015 XLI Latin American Computing Conference (CLEI)

Fig. 15. Activiti forms screenshots: (a) Select Web Sources for the selected domain and (b) Create Expected Schema for each selected Web Source

which will activate the loop and present the form again, for the
same Web Source until it is finished. In this screenshot the
options to select existing schemas and to continue adding
attributes are not shown, but they are the same as in the
previous form. Once the expected schemas are created, the
mappings with each Web Source are defined.

Then the Integrated Schema is defined in the same way,
and after that, the corresponding mappings to the Expected
Schemas defined are established, as presented in Fig. 13.
Finally the DW Schema is defined, creating the tables and
defining which are fact tables and which are dimension tables.
To end the configuration process, the corresponding mappings
from the DW to the Integrated Schema are defined. As all
mappings are presented in the same way, in Fig. 16 we show
the definition of mappings between the DW Schema and the
Integrated Schema as an example, along with the data
registered in the "mapping_dw" table after executing the task.

It can be seen in Fig. 16 (a) that for each Table in the DW
Schema, we present all the attributes defined, which have to be
mapped to attributes in the tables of the Integrated Schema. In
this case, the DW table corresponds to the Accommodation
(alojamientos) one with attributes "city" (ciudad) and
"accommodationId" (código), and the Integrated attributes
correspond also to the table Accomodations
(alojamientos_integrated) with the same names. In Fig. 16 (b)
an example of the data registered in the "mapping_dw" table
after executing the task "Mapping DW schema and Integrated
Schema" is shown. It presents examples of values for the
following columns: config, dw_schema, attribute_dw_schema,
integrated_schema and attribute_integrated_schema, as defined
in the configuration data model presented in Fig. 7.

Fig. 16. (a) Activiti form to define mappings between the DW Schema and

the Integrated Schema, (b) corresponding data in the "mapping_dw" table

2015 XLI Latin American Computing Conference (CLEI)

Once the Configuration process has finished, the
configuration data has been registered in the Configuration
database filling the tables presented in Fig. 7, and the Feeding
process to actually load the data into the WW can be executed.

B. Execution of the WW Feeding process
To validate the configuration BP and data we have defined,

the proof of concept developed for the Feeding process was
executed in order to analyze the WW generated. The first form
asks the user to select a defined Configuration, in this case the
one we have defined, and based on that the process is executed
automatically. For each Feeding process a new data base is
created with the name "base_id" being "id" the number of the
selected configuration. Then the Expected Schemas, the
Integrated and the DW schemas are created as defined in the
configuration data, with corresponding tables and attributes.

Then the data is extracted from the Web Sources via
invoking the Data Sources defined, and loaded into the
Expected Schemas as defined. Continuing with the automated
process, the data is loaded in the Integrated Schema following
the definitions of mappings and joins, and then into the DW
Schema as defined. In this case we do not have any integration
issues since we have simplified the data to execute the basic
scenario of DW loading. The only form that will be presented
to the user during the process correspond to the confirmation of
the query generated to load the DW fact tables, giving the user
the option to change it. In Fig. 17 the Activiti form to confirm
the query to load the DW fact tables is shown.

Fig. 17. Activiti form to confirm the query to load the DW

As it can be seen in Fig. 17, the fact table as defined in Fig.
14 named FACT_EVENTS (eventos) will be loaded with data
corresponding to the dimension tables: DM-TIME (fecha),
DM-ACCOMM (cod_alojamiento), DM-TRANSPORT
(cod_servicio), DM-LOCATION (cod_ciudad), as defined by

the mappings with the Integrated Schema. Finally the data for
the DW will be loaded into the defined tables and will be ready
to be used for exploitation.

V. RELATED WORK
Most related work we have found only focuses in the ETL

phase of the construction of a DW and it mainly uses BPMN
for design purposes, not to automating the process. For
example, in [17][18][19] BPMN is used for conceptual
modeling of ETL Processes. Also, in [20] a model-driven
framework for ETL process development is presented. The
framework allows modeling ETL processes in a platform
independent way, using a meta-model named BPMN4ETL,
and generating vendor specific code from these models.

Compared to those, our proposal also supports the ETL
phase via a feeding process, including a previous configuration
phase in which a configuration process is defined for the user
to be able to input data to be used for the actual load of the
DW. What is more, the BPMN 2.0 notation is not only used for
modeling the configuration and feeding BPs, but also as basis
for executing them in the open source BPMS Activiti. The
provision of automated support to guide the building process of
a DW in the way we do, is to the best of our knowledge, not
proposed in the literature.

VI. CONCLUSIONS AND FUTURE WORK
We have presented the modeling, definitions and data

needed to support the process of building flexible WW. Our
complete approach is based on the definition of two phases
with corresponding BPs: a Configuration phase with a
configuration BP which aims to provide support for the user to
define and input the data needed to build the WW, and a
Feeding BP that in a second phase, using the configuration
data, actually generates the WW. We have focused on the
configuration BP presenting the model specified in BPMN 2.0,
and the executing model also in BPMN 2.0 implemented in the
open source BPMS Activiti. We have validated our approach
with a case study using open government data from Uruguay.
Our proof of concept implementation of the configuration BP
although conceptually completed, presents some limitations.
For example, we had not yet dealt with modifying already
registered data, you could say we are assuming an ideal user
who defines everything correctly the first time. We plan to add
more loops allowing to modify the definitions regarding the
schemas and mappings, so to be able to correct or delete things
until the user is ok with the definitions. In a similar way, the
Feeding process we have implemented was only to validate the
configuration data we are registering, and needs more work.

The automated support for building flexible WW we
propose will provide organizations with many benefits, such as
bridging the gap between the involved roles (Domain Experts
and IT professionals) as they can talk about the BP model and
understand the different tasks that has to be carried out, provide
easier to use definitions and guides as in the execution the
process engine presents the tasks to be performed accordingly
to the control flow defined in the process, provide automated
execution as much as possible, whenever something can be
performed automatically based on data retrieve from the user,

2015 XLI Latin American Computing Conference (CLEI)

it will be automated, provide data about the definitions taken
by the user i.e. who defined what in what task, along with
many other valuable information regarding the execution of the
BPs which is automatically registered in the BPMS process
engine as BPs are executed.

We are currently working on completely defining the
Feeding process to be able to resolved and automate as much
as possible some of the issues regarding data integration, and
adding the quality view to both the Configuration and the
Feeding processes, to complete the automated support for
building Quality-Aware flexible WW with BPMS.

ACKNOWLEDGMENT
We would like to thank the students who worked in the

development of the Configuration BP and its validation,
F. Alonso and M. Mendiola.

REFERENCES
[1] Open Government Data http://opengovernmentdata.org/
[2] Marotta A., González L., Ruggia R., "A Quality Aware Service-oriented

Web Warehouse Platform". In Proceedings of Business intelligencE and
the WEB (BEWEB), EDBT, Berlín, Germany, 2012.

[3] Weske M., Business Process Management: Concepts, Languages,
Architectures, Springer, 2007.

[4] van der Aalst W.M.P.,ter Hofstede A., Weske M., "Business Process
Management: A Survey", In Proceedings Int. Conf. on Business Process
Management (BPM), The Netherlands, 2003.

[5] Smith H., Fingar P., Business Process Management:The third wave,
Meghan-Kieffer, 2003.

[6] BPMN 2.0, OMG, http://www.omg.org/spec/BPMN/2.0/
[7] Delgado, A., Ruiz, F., García-Rodríguez de Guzmán, I., Piattini, M.

"Application of SOC and MDD paradigms to Business Processes: a
systematic review". In Proceedings 5th Int. Conf. on Software and Data
Technologies (ICSOFT’10), Athens, Greece, 2010

[8] Activiti BPMS http://activiti.org/
[9] Delgado A., Marotta A., González L., "Towards the construction of

quality-aware Web Warehouses with BPMN 2.0 Business Processes".
In procs. IEEE 8th International Conference on Research Challenges in
Information Science, RCIS 2014, Marrakech, Morocco, 2014.

[10] Dumas M., van der Aalst W.M.P., ter Hofstede A., Process-Aware
Information Systems: Bridging People and Software Through Process
Technology, ISBN: 978-0-471-66306-5, Wiley&Sons Inc., 2005

[11] XPDL, WfMC, http://www.wfmc.org/xpdl.html
[12] WS-BPEL, OASIS, http://docs.oasis-open.org/wsbpel/2.0/
[13] Malinowski E., Zimányi E., Advanced data warehouse design: from

conventional to spatial and temporal applications. Springer Science &
Business Media, 2008.

[14] Ministerio de Turismo y Deporte. http://apps.mintur.gub.uy/datos
Abiertos/ Last access: 30/5/2015

[15] Dirección Nacional de Transporte. http://catalogodatos.gub.uy/dataset/
aa2405be-6dde-4482-8f5f-563817154282/resource/e62a3ef8-4e00-
458b-bcbe-4b293ce0ebba/download/HorariosOmnibusVerano2015.zip
Last access: 30/5/2015

[16] Intendencia de Durazno. http://www.durazno.gub.uy/portal/datos-
abiertos/3418-datos-abiertos-de-la-intendencia-de-durazno397 Last
access: 30/5/2015

[17] Akkaoui Z. E., Mazón J.-N., Vaisman A., Zimányi E., “BPMN-Based
Conceptual Modeling of ETL Processes,” in Data Warehousing and
Knowledge Discovery, A. Cuzzocrea and U. Dayal, Eds. Springer Berlin
Heidelberg, 2012, pp. 1–14.

[18] Oliveira B., Belo O., “BPMN Patterns for ETL Conceptual Modelling
and Validation,” in Foundations of Intelligent Systems, L. Chen, A.
Felfernig, J. Liu, and Z. W. Raś, Eds. Springer Berlin Heidelberg, 2012,
pp. 445–454.

[19] Berkani N., Bellatreche L., Khouri S., “Towards a conceptualization of
ETL and physical storage of semantic data warehouses as a service,”
Cluster Comput, vol. 16, no. 4, pp. 915–931, Dec. 2013.

[20] Akkaoui Z. El, Zimànyi E., Mazón J.-N., Trujillo J., “A Model-driven
Framework for ETL Process Development,” in Proceedings of the ACM
14th International Workshop on Data Warehousing and OLAP, New
York, NY, USA, 2011, pp. 45–52.

2015 XLI Latin American Computing Conference (CLEI)

