
An Open Source Framework to Manage Kinect on
the Web

Francisco Moreno, Esmitt Ramı́rez, Francisco Sans and Rhadamés Carmona
Computer Graphics Center, Computer School

Faculty of Sciences, Central University of Venezuela
Caracas, Venezuela, 1040

email: francisco.moreno@ciens.ucv.ve, esmitt.ramirez@ciens.ucv.ve,
francisco.sans@ciens.ucv.ve, rhadames.carmona@ciens.ucv.ve

Abstract—Human-computer interaction has had continuous
changes in recent year, with a significant improvement in touch
screens and motion sensors. New sensing technologies, like
Microsoft Kinect, provide a low-cost way to add interactivity
with gestures and postures. The current tendency is to develop
software for the web. Interactions through the Kinect can be
an additional benefit for these applications. While there is a
solution to use the Kinect in the web, it is only supported on
Windows platform by using Internet Explorer browser. In this
paper, we propose a robust, interoperable, elegant and efficient
server-client open source framework which allows interacting
with the Kinect or similar capture device from browsers. The
tests support our hypothesis, resulting in a low consumption of
memory/time in different modern browsers. Also, an experimental
test was performed to prove its usefulness, getting a rate of 30
fps successfully.

Keywords—kinect, open source, framework, image processing,
interoperability.

I. INTRODUCTION

In recent years, several novel approaches to human-
computer interaction (HCI) became popular for their wide
spread accessibility and low costs. Devices based on touch
screens for mobiles, large displays, motion sensors, and others
are increasing their presence in the modern world. Motion sen-
sors as Microsoft Kinect, Nintendo Wii and Sony PlayStation
Move were originally developed to be accessories in video
game consoles, but used as low-cost HCI devices in many
research areas.

The Kinect sensor was originally intended to be a motion-
sensing input device for the XBox 360, allowing the user
to control games via gestures and spoken commands [1]. In
this way, the Microsoft Kinect sensor allows natural ges-
tures/postures without touching a game controller. Also, it
offers functions as 3D scanner capable of capturing a color
image, infrared, depth map, and skeleton-articulated structure
of a user, see Fig. 1.

It is possible to use the Kinect to recognize gestures and
skeleton tracking to control assorted control applications. All
these features increase popularity of the Kinect in several
applications such as touch screens, full body 3D scanners, face
tracking, and other applications that changes the original use
of the kinect [3].

Since the last decade, the current development is to create
software for the web [4], and Kinect-based applications are

Fig. 1: Kinect allows capture data as a webcam, depth map
and skeleton info of users in front of it. Image taken from

Kinect for Windows website [2].

not the exception. For instance, the ability to use Kinect
data within a classic web application. Moreover, they involve
new kinds of interactions on traditional websites and new
kind of web applications, which were until now, exclusively,
standalone. There is an official version to use the Kinect on
the web [5], but it is limited to Microsoft Internet Explorer
browser over a Windows operating system.

Due to this limitation, it is important to have an open
source tool to capture and handle features offered by the
Kinect, supporting most of the popular browsers for devel-
oping different applications. In this paper, we present an open
source framework which offers an effective and robust server-
client approach to manage a pipeline for data acquisition and
rendering using the Kinect. This approach is able to work in
any modern HTML5-support browser.

We can summarize our contribution as described below:

• Usage of Microsoft Kinect as an acquisition device
without depending of a proprietary SDK, being plat-
form independent.

• A robust client-server approach based on WebSocket
to develop a base for future applications.

• Implement a standard format to exchange and display
data of color image, depth map and skeleton.

This paper is organized as follows: section II presents
the main previous research, which represents the basis of our
study. Section III exposes the design and development of our
tool, describing each module and data structures used. Section

2015 XLI Latin American Computing Conference (CLEI)

978-1-4673-9143-6/15/$31.00 c©2015 IEEE

IV explains the experimental tests and shows the obtained
results. Finally, section V presents the conclusions and future
work.

II. RELATED WORK

The Microsoft SDK Kinect has fully support on the desk-
top, where several researches have been using the Kinect as
a lower-cost acquisition device to develop specialized applica-
tions [6]–[8], serious games [9]–[12], and social areas such as
cognitive studies of groups [13]–[15], in culinary arts [16] or
inclusive in dancing [17].

To clarify, all access to the Kinect via browser requires
the user to install some kind of service in client machine.
This service would then expose itself via the TCP networking
stack (e.g. Flash or Silverlight) so a browser plug-in can call
back to it on the localhost. In the same way, it is possible
to use HTML5 to expose this service using WebSockets or
an AJAX-style service returning JSON data (i.e. JSON is an
open standard format to transmit data objects consisting of
attribute-value pairs).

Our research shows us that there is a solution based in a
JavaScript API provided by Microsoft Research [5] to develop
an application using the Kinect in a web browser. Also, there
are other solutions provided by the community of developers
[18], [19] which use the proprietary SDK of Microsoft. These
APIs allow the access to the data provided by the Kinect (i.e.
color and depth images) and DOM events for joint activity.
The API of Microsoft Research is an ActiveX plugin which
runs in a browser. It requires the Microsoft Kinect drivers to
be installed on the machine. This creates a limitation, since
the operating system must be Windows with recent versions
of IE (i.e. IE9 or newer).

Furthermore, there are applications which allow web
browsers to have full control on the Kinect as gesture capture
device. This is achieved using a second on-running application
as shown in [20]. A remarkable research in this area is
the work presented in [21], which consist in 2 subprojects:
server-side and client-side. However, this solution employs the
original SDK which makes the solution a C# application. Other
applications which use the proprietary SDK can be found in
[22] and [23].

There are solutions based on the OpenNI library [24],
which find the interoperability of natural user interfaces for
Natural Interaction (NI) devices. This library operates as a
middleware between applications, for instance DepthJS [20]
(which only works for Google Chrome). Applications to con-
trol drones [25], or web server that provides an HTTP interface
for the Kinect [26], or to capture the skeleton [27], [28], are
also solutions implemented using this open source approach.

A few commercial solutions employ the Kinect on any web
browser to develop applications. An outstanding example is
ZDK [29] which allows to access to the color image, depth
map and skeleton data from the Kinect with a high-level
abstraction for the components using Unity.

In this work, we introduce an interoperable open source
framework to use the Kinect as capture device from popular
web browsers in order to set up a new kind of applications.

III. OUR APPROACH

In this section, we discuss about the proposed framework.
First, we describe a global overview of the solution; then, each
module is detailed in further subsections: image acquisition,
service processing, networking, browser processing and, dis-
play.

A. Architecture

We implemented a framework to capture Kinect’s data and
display it on different web browsers. It is based on a client-
server approach. Fig. 2 shows the structural architecture of our
proposal.

Fig. 2: Basic architecture of our approach showing the
Service and Client functional structures.

Basically, our solution can be divided in two sections: A
server-side application which uses OpenNI, NiTE and Web-
Socket, and a client-side application using JavaScript on a
HTML5 canvas. Notice that the Kinect device is located in
the server-side. However, instead of using the Microsoft SDK
for Kinect, we use the drivers offered by the library OpenNI
to control the device hardware. Also, we use the library NiTE
for the user recognition, and WebSockets to achieve real-time
communication with the client. The server-side is implemented
as a Service. Thus, the client can request Kinect data to the
server, and perform some local processing to manage such a
data in the browser.

The client-side runs over a browser with HTML5 support,
such as Google Chrome [30], Microsoft Internet Explorer [31],
Opera [32], Mozilla Firefox [33] and Apple Safari [34]. The
client-side is the responsible to do the required processing. We
implemented the basic functionality, which includes: showing
the color image, depth map, and skeleton.

Fig. 3: Modules of our solution. Blue modules are located in
server-side and red modules in client-side.

The solution is composed by a set of modules which are
distributed in server and client side. The Fig. 3 represents
an overview of the available modules. The upper modules

2015 XLI Latin American Computing Conference (CLEI)

Fig. 4: Scheme of the image acquisition stage in our framework.

(blue rectangles) are located in the server-side, and the lower
modules (red rectangles) are located in the client-side.

The workflow starts in the Image Acquisition module.
It receives the data captured from the Kinect device. The
Processing module (server-side) validates the received data.
Then, the Networking module is responsible to send and re-
ceive information. Notice that networking module is presented
in both sides: server and client. Once data is received by
the client-side, the Processing module (client-side) is able to
require more data from the server-side, while the Display
module is used to show the visual results.

The following subsections explain more deeply each im-
plemented module in our solution.

B. Image Acquisition

The first stage in the pipeline consists in the acquisition of
the image, captured by a sensor device (i.e. Kinect). This mod-
ule is server-side which has access to basic built-in features
of hardware such as color image (in RGB pixel format) and
depth map. The Microsoft Kinect has other relevant features:
information of microphones array or a quad rotor to move the
angle of cameras up and down. The Kinect SDK provided by
Microsoft handles all these device features. However, this SDK
is not an open source solution.

Our approach supports any sensor acquisition device with
the basic features used in this research: color image, depth
map, and skeleton. This process is achieved using the OpenNI
library, which is used, specifically for this work, to control the
Kinect.

The process of image acquisition is shown in Fig. 4, where
the Kinect captures the 3D scene to be process for OpenNI
library. After, a RGB image and a depth map are generated.
From the depth map, the skeleton of the user is computed
(using NiTE library).

NiTE processes the information provided by OpenNI, in
such a way that it is able to identify and discriminate common
objects within the field of view of the device (e.g. humans),
allowing a coarse detection of up to seven people in the scene
and a finer detection of up to two users within the scene.

One of the users is selected as the direct/main participant
to interact with the application. Using NiTE, the position of
each joint can be detected, obtaining a virtual user skeleton
located within the 3D space. The skeleton provides a set of
joints located over the skeleton in strategic places. For each
individual joint, the reliability of its location can be expressed
according to three possible states: captured, inferred and/or
unknown.

The data acquisition is only performed when the client
requests such a data. We set the resolution of the images
to 640 × 480 pixels, representing the maximum resolution
supported by the Kinect with a rate of 30 frames per seconds
(i.e. 30 fps).

C. Service Processing

The acquired data has to be validated before been processed
for delivery via the communication channels. If any data value
is invalid, a string is generated in JSON format containing an
error code and a description associated with it. The purpose
is to provide the client a feedback when his request cannot be
processed.

As an example, the process that involves the capture of the
user skeleton can fail if there is not a user to track or if the
user has not been tracked correctly. In this case the service
processing module detects this situation and notifies it to the
client through an error message.

Notice that when a user is not tracked, it is consider as
an error. In many other applications, this is treated only as a
warning message or maybe another non-severe notification.

D. Networking

As mention before, the networking stage is placed in both
server an client side. Then, before sending the information
through the communication channels, a set of steps must be
performed by the server:

1) Establish a successful connection with the client.
2) Check for any error in the data to notify to the client.
3) Prepare the data to be sent.

2015 XLI Latin American Computing Conference (CLEI)

4) Calculate the data size.
5) Send the data through the WebSocket.

The data preparation varies depending on the data to send.
For the skeleton, the coordinates (x, y, z) of each joint may be
mapped (if required) into image space of the depth map. NiTE
provides a set of instructions to perform such a mapping.

With the information of the 2D or 3D points, a string is
generated in JSON format containing all skeletal joints and
their positions. This string is then transformed into an array
of bytes with UTF8 (8 bits Unicode Transformation Format)
coding.

For the depth map, each of the depth distances (a 16
bits integer) is divided in two bytes. These distances are
successively stored within an array of bytes. The size in bytes
of this array is twice the resolution of the depth map.

For the color image, the color components (R, G, B)
of the pixels are stored consecutively within an array of
bytes. Because the colors are already represented in 8 bits,
no extra processing is required. The array size is three times
the resolution of the color image. Fig. 5 shows an example of
this image decomposition.

Fig. 5: Structure of the RGB image as a sequence of bytes to
be store.

E. Browser Processing

When the client receives the data, the first step is to verify
if the received information corresponds to an error message or
not. If it does not correspond with an error, we check if the
data is a valid JSON format or a binary format.

If the information received is in JSON format, we check
if it corresponds with the skeleton information in 2D or 3D
space. Then, the information is stored into a JavaScript object.
In each case, a callback function is invoked in order to process
the specific skeleton. The developer can optionally set a user-
defined callback to process the skeleton. In any case, the user
may indicate if the skeleton must be displayed or not. In our
framework, we provide a function to display the skeleton into
the 2D canvas.

If the information comes in binary form, its size must
be evaluated. If the size of the coming information doubles
the known size of the expected image, it is assumed that the
image corresponds to a depth map. In this case, the received
information is stored into an array of integers of 16 bits in
JavaScript. As in the case of the skeleton, the user may define

a callback function to be invoked, and the depth map may be
automatically displayed if required.

If the size of the received information is three times the
size of the expected image, it would correspond to a color
image. This image is stored into an array of integers of 8 bits,
where 3 consecutive bytes are the RGB channels of a pixel.
The programmer may define a callback function to manage
this image, and decide if the color image must be displayed
or not.

When the received data has been processed, the library
automatically sends to the server a request for a new frame of
data, according to the last set of received data.

F. Display

The process of data rendering can be requested by the
user in a specific time, or it can be activated automatically.
This process will work differently depending of the kind of
information requested to render (i.e. color, depth or skeleton).

If the information that is going to be rendered is the color
image, only the byte array is given to the HTML5 canvas.
In the case of the depth map, this must be normalized. Each
distance of the image is transformed to the space [0, 1] first,
dividing each value within the maximum possible distance.
With this new data, a new color array is created with 3 channels
for every color. Each one will have the normalized distance
multiplied by the maximum value in the RGB color space,
the 255. This creates a grey scale image, where the darkest
color indicates the nearest distance from the device, and the
brightest the farthest.

To render the skeleton, the structure describing the skeleton
must be transverse, drawing a fixed size circle in the position
of each joint. However, the drawing of the joint can be selected
by the user. For our approach, we used a simple circle, but it
represents the center of a drawing structure.

An example of these three kind of rendering is observed in
Fig. 6, where a color image (see Fig. 6(a)), a depth map (see
Fig. 6(b)), and a skeleton are shown; red dots represent the
joints while blue lines connect the dots to illustrate the figure
(see Fig. 6(c)).

It is important to note that the different rendering processes
described above, were designed to work in the HTML5 canvas
of modern browsers. Thus, it is possible to show a combination
of data such as color + skeleton or depth + skeleton in a
same image. Fig. 7 shows an example of this characteristic
implemented in our framework.

We have explained all the modules for our open source
framework to manage the Kinect, from the image acquisition
to the display modules. Now, the results of our research will
be presented.

IV. TESTS AND RESULTS

To test the effectiveness of our solution, we performed a set
of experiments. These tests are related to the interoperability
between different browsers, time and memory consumption.
They are performed in two main operating systems: Windows
7 and Ubuntu. Also, we checked device interoperability, using

2015 XLI Latin American Computing Conference (CLEI)

(a) (b) (c)

Fig. 6: Illustration of the application showing: (a) only the color image, (b) only the depth map, and (c) only the with joints.

(a)

(b)

Fig. 7: A rendering example using our framework where it
shows (a) the color image and the skeleton, (b) the depth

map and the skeleton.

different devices at the same time. Finally, the tool was tested
in a particle system application.

The initial configuration of the Kinect resolution was 640×
480 pixels for the RGB color image and depth maps. We use
this resolution instead of 1280× 960 pixels, because with the
latter resolution the hardware performance is lower than 30
fps and it does not reach a real time performance.

All tests were executed on a PC with Windows 7 (64 bits)
and Ubuntu 14.04 LTS (64bits), with an Intel(R) Core(TM) i7-

3770 CPU of 3.40 GHz, and 8.00 GB of RAM. Additionally,
the Kinect version used was the Kinect 1 for PC instead of the
Kinect One to capture the performance in less capable devices.

A. Windows

To test on the Windows 7 PC operating system the envi-
ronment was configured with the Microsoft SDK for Kinect,
OpenNI 2.0 and NiTE 2.0. We used the proper Windows
version of these software.

1) Browser Interoperability: A JavaScript library called
stat.js [35] was used as a benchmark tool to measure the time
in milliseconds between a client request, and the reception of
the data from the server in the client-side. The server can only
produce new information at 30 frames per seconds, but the
client can request more frames.

In the case of Windows 7, the browsers used for the
test were: Google Chrome version 42.0.23, Internet Explorer
version 11, Opera version 29.0, and Mozilla Firefox version
37.0.1. All these versions were the latest to June 2015. Table
I summarize the time of information retrieval from the server
using different browser.

TABLE I: Time in milliseconds for information retrieval
from the server by different browser in Windows.

Browser
Information Retrieved Chrome Explorer Opera Firefox

Color Image 30.00 32.00 31.00 34.00
Depth Map 33.00 32.00 33.00 30.00

Skeleton 30.00 33.00 32.00 31.00
Color + Depth 67.00 65.00 68.50 67.50

Color + Skeleton 65.50 65.50 65.00 67.00
Depth + Skeleton 66.00 68.00 64.50 66.50

All Buffers 99.67 99.33 99.67 99.00

The Table I shows the time between the client request and
the data reception, on different browsers. As can be observed in
the table, if the client requests one buffer of information (color
image, depth map, or skeleton), the server lasts in average 32
milliseconds to send the requested information.

If the client requests a pair of buffers (color image and
depth map, color image and skeleton, or depth map and
skeleton), the server takes in average twice the time than with
one buffer. This is expected, as the server receives the petitions

2015 XLI Latin American Computing Conference (CLEI)

of the client one by one, stores them in a queue, and resolves
the petitions one by one.

As the Kinect can only generate 30 fps, half of the frames
resolve a petition of a specific buffer and the other half of
the frames resolves the other petition. The same behavior is
observed in the case of requesting three buffers. In this case,
the server takes three times longer than with a single buffer to
send the requested information.

Nevertheless, the tool allows the client to display every
time a piece of information is received, even though all not
information is available. In this case, the display is generated
with the new available information, and with the previous
frame information for those buffers needed. That allows the
application to run at interactive times.

2) Memory Consumption: The Windows task manager
tool was used for this test to measure the total RAM that
the application consumes. The server memory occupancy is
independent of the browser used and the number of buffers
required by the client, occupying around 221 Mb of memory
on average.

In the case of the client-side, the Table II shows the average
of the memory occupancy for different browsers in Kb. We
subtracted the memory consumption of the browser running
the application, versus the memory consumption of the browser
with a blank page.

TABLE II: Memory Occupancy of the application in the
client browsers in Windows.

Memory occupancy (Kb)
Chrome 171,063
Explorer 72,739

Opera 185,530
Firefox 266,568

As can be observed, Explorer has the lowest memory con-
sumption, and Firefox has the highest memory consumption
for all the browsers. It is interesting to notice how different
this measure is for every browser, remarking the difference of
implementation of each of them.

B. Ubuntu

In the case of Ubuntu, the Microsoft SDK for Kinect cannot
be used. For the Kinect driver, the OpenKinect was necessary.
To retrieve the information the OpenNI 2.2 and NiTE 2.0.0
was required. Again, we used the proper Linux-based machines
version of these software.

1) Browser Interoperability: The browsers used for the test
were: Google Chrome version 42.0.23, Opera version 31.0, and
Mozilla Firefox version 31.0. Internet Explorer was not taken
into account because there is not an official version available
for Ubuntu.

For this test, we used the same benchmark tool and test
methodology as in the case of the Windows operating system.
We present in Table III the time results between the client
request and the data reception from the server using different
browser in Ubuntu.

TABLE III: Time in milliseconds for information retrieval
from the server from different browser in Ubuntu.

Browser
Information Retrieved Chrome Opera Firefox

Color Image 31.00 33.00 33.00
Depth Map 31.00 33.00 31.00

Skeleton 32.00 30.00 32.00
Color + Depth 65.00 66.00 66.00

Color + Skeleton 65.00 66.00 68.00
Depth + Skeleton 68.00 64.00 67.00

All Buffers 99.00 100.67 108.00

As shown in the previous table, the behavior is as expected:
very similar to the Windows version. As before, the request
of a pair of buffers takes twice the time than a request for a
single buffer, working each petition from the client once at a
time.

It is noteworthy that both obtained times (in Windows and
Ubuntu) are the average of several execution of the benchmark.
The results were taken from an average of 50 executions of
each test.

2) Memory Consumption: In the case of Ubuntu, we used
the Gnome System Monitor to measure the total consumption
of memory RAM. The server occupies 230 Mb to allocate our
solution.

The memory consumption of the client-side is shown in
Table IV, where is the values in Kb for Google Chrome, Opera
and Firefox browser clients. Notice that the versions of the
browser are different than the ones used in the Windows test.
However, that aspect does not cause a strong impact in the
results.

TABLE IV: Memory Occupancy of the application in the
client browsers in Ubuntu.

Memory occupancy (Kb)
Chrome 55,800
Opera 146,000

Firefox 240,300

As can be observed, Firefox was the browser with the most
memory consumption and Chrome was the browser with less
consumption. The behavior is almost the same as Windows in
this test. Nevertheless, this test is not conclusive as all browsers
have different implementations and ways to manage memory
in each operating system.

Another aspect to remark is the better memory management
of the browser tested in Linux against Windows. In all cases,
the consumption is less (excluding Internet Explorer in the
Windows case). However, this characteristic is not directly
related with our solution but it is important to consider when
selecting a base operating system to develop web-applications.

C. Device Interoperability

The application was tested in different devices at the same
time, connecting several devices with the same remote server.
Fig. 8 shows a PC displaying the color image and the skele-
ton (top-center), a cellphone displaying only the depth map

2015 XLI Latin American Computing Conference (CLEI)

(bottom-left) , and another cellphone (bottom-right) displaying
only the color image. As long as a device has an Internet
connection and a browser with HTML5, it can connect to the
server.

Fig. 8: An example of three devices connected to the same
server showing the skeleton points, the depth map and the

color image.

D. Integrating with an Application

An application using WebGL1 was developed to test the
complexity of integrating our tool with a basic program. The
implemented program is a set of particles systems that are
controlled with the Kinect. The main idea is to measure the
performance and ease of integration of our framework with
any public library available on Internet.

Firstly, notice that WebGL (Web Graphics Library) is a
JavaScript API for rendering interactive 3D computer graphics
within any compatible web browser without the usage of
plug-ins. It is maintained by the Khronos Group, which also
maintain the OpenGL graphics library. It is integrated with the
standards of the browsers, allowing the use of the GPU with
JavaScript code and shaders. With this graphics library and the
information provided with our tool, Kinect interactivity can be
added to several type of graphic applications.

To develop the application, the WebGL based engine Baby-
lonJS [36] was used. Nowadays, BabylonJS is a widely known

1https://www.khronos.org/webgl/

Javascript library to easily render 3D primitives in a browser.
With this engine, a scene can be established with 15 basic
particle system (i.e. associated to the joint in the skeleton). In
this way, the particle system can be displayed without lacks at
a frame rate of 60 fps.

Then, the interaction with Kinect was added, in which
one particle system is mapped to each of the skeleton joints
provided by our tool, as is presented in Fig. 9. Notice in the
figure that the test created is interactive and captures several
movements in real time (from left to right): standing with legs
apart (see Fig. 9(a)), with hands on hips (see Fig. 9(b)), and
standing on one foot (see Fig. 9(c)).

The particle system was chosen to exploit the high com-
puting on displaying over a browser. For this study case, our
open source solution shows a frame rate at 60 fps; keeping
the processing overhead generated by the Kinect as a non-
significant impact over an application.

It is important to keep in mind that the user skeleton is
refreshing at a rate of 30 fps, which means that half of the
rendered frames are using updated skeleton information. This
outcome is expected because the web application renders the
last information received by the client, even though a new
request might have been sent by the client.

V. CONCLUSION AND FUTURE WORK

This paper introduces an open source framework using
open source libraries to use the Kinect as acquisition device to
manage the data such as color image, depth map and skeleton.
The framework tackles the limitation of using standalone
applications when a proprietary SDK is used for the Kinect. It
offers a server-client approach to develop applications on it.

This work opens several possibilities regarding Kinect and
other acquisition devices usage. We have tested the framework
in a PC with Windows and Ubuntu, using different browsers.
About 30 frames per second can be delivered to the client-side,
including color image, depth map and skeleton. This frame rate
is limited by the Kinect rate, which is also 30 fps.

Our proposal is focuses in the development in web appli-
cations which use the Kinect as acquisition device. Also, as
we stated, its usage over different devices that have a modern
browser (i.e. with support for HTML5) might be considered
for applications in specialized conferences such as medical
teleconferences with patients, school dancing sessions, and
others real-time software.

Similarly, our tests proved its ease integration on existing
libraries available using Javascript. In our case study, we labour
our framework with a 3D particle system which demands
graphic resources in the browser with ease. This test demon-
strates that our solution does not affect drastically a real-time
application on the web. We hypothesized that our solution
might occupy an aspect to be considered in traffic/network
high demanding applications in a client-server scheme.

For future work, we propose tests in other devices in
order to get more information about the performance of our
framework. Also, incorporate different networking scenarios
to measure the performance of the framework when the server
and client are in different physical machines. Furthermore, the

2015 XLI Latin American Computing Conference (CLEI)

(a) (b) (c)

Fig. 9: Particle system developed using BabylonJS together with our solution capturing points using the Kinect in different
positions: (a) standing with leg apart, (b) with hands on hips and, (c) standing on one foot.

server responses can be improved by stacking different buffer
solicitations from the same client, and responding to them with
only one call to the Kinect. This will allow a quicker receive
of information by the client.

ACKNOWLEDGMENT

The authors would like to thank reviewers for their in-
sightful comments on the paper, as these comments allow us
to improve this work.

REFERENCES

[1] A. Davinson, Kinect Open Source Programming Secrets: Hacking the
Kinect with OpenNI, NITE, and Java, 1st ed. McGraw-Hill Education
TAB, 2012.

[2] Microsoft, “Kinect for Windows,” http://goo.gl/imiEIK, 2013.
[3] J. St. Jean, Kinect Hacks: Tips and Tools for Motion and Pattern

Detection, 1st ed. O’Reilly Media, 2012.
[4] T. O’Reilly, “What is web 2.0 - design patterns and business

models for the next generation of software,” September 2005, [Online;
30-September-2005]. [Online]. Available: http://www.oreilly.com/pub/
a/web2/archive/what-is-web-20.html

[5] Microsoft Research, “Kinect in the Browser,” http://goo.gl/sGW7E1,
2013.

[6] N. Villaroman, D. Rowe, and B. Swan, “Teaching Natural User Interac-
tion Using OpenNI and the Microsoft Kinect Sensor,” in Proceedings of
the 2011 Conference on Information Technology Education, ser. SIGITE
’11. ACM, 2011, pp. 227–232.

[7] E. Stone and M. Skubic, “Evaluation of an inexpensive depth camera
for passive in-home fall risk assessment,” in Pervasive Computing
Technologies for Healthcare (PervasiveHealth), 2011 5th International
Conference on, May 2011, pp. 71–77.

[8] Y. Cui and D. Stricker, “3D Shape Scanning with a Kinect,” in ACM
SIGGRAPH 2011 Posters, ser. SIGGRAPH ’11. New York, NY, USA:
ACM, 2011, pp. 57:1–57:1.

[9] S. Saha, M. Pal, A. Konar, and R. Janarthanan, “Neural network based
gesture recognition for elderly health care using kinect sensor,” in Pro-
ceedings of the 4th International Conference on Swarm, Evolutionary,
and Memetic Computing - Volume 8298, ser. SEMCCO 2013. New
York, NY, USA: Springer-Verlag New York, Inc., 2013, pp. 376–386.

[10] F. Moreno, J. Ojeda, E. Ramı́rez, C. Mena, O. Rodrı́guez, J. Rangel, and
S. Álvarez, “Un framework para la rehabilitación fı́sica en miembros
superiores con realidad virtual,” in Proceedings of the I Congreso
Nacional de Computación, Informática y Sistemas (CoNCISa 2013),
2013, pp. 77–84.

[11] J. E. Muñoz, R. Chavarriaga, and D. S. Lopez, “Application of hybrid
bci and exergames for balance rehabilitation after stroke,” in Proceed-
ings of the 11th Conference on Advances in Computer Entertainment
Technology, ser. ACE ’14. ACM, 2014, pp. 67:1–67:4.

[12] J. Ojeda, F. Moreno, E. Ramı́rez, and O. Rodrı́guez, “Gesture-gross
recognition of upper limbs to physical rehabilitation,” in Proceedings
of the International Congress of Numerical Methods in Enginnering
and Applied Sciences (CIMENICS)), 2014, pp. PI 7–12.

[13] A. L. S. Kawamoto and F. S. C. da Silva, “Using low-cost technologies
in the development of people-monitoring applications,” in Proceedings
of the 2013 XV Symposium on Virtual and Augmented Reality, ser. SVR
’13. IEEE Computer Society, pp. 204–207.

[14] R. Harper and H. Mentis, “The mocking gaze: The social organization
of kinect use,” in Proceedings of the 2013 Conference on Computer
Supported Cooperative Work, ser. CSCW ’13. ACM, 2013, pp. 167–
180.

[15] B. Nansen, F. Vetere, T. Robertson, J. Downs, M. Brereton, and
J. Durick, “Reciprocal habituation: A study of older people and the
kinect,” ACM Trans. Comput.-Hum. Interact., vol. 21, no. 3, pp. 18:1–
18:20, Jun. 2014.

[16] G. Panger, “Kinect in the kitchen: Testing depth camera interactions
in practical home environments,” in CHI ’12 Extended Abstracts on
Human Factors in Computing Systems, ser. CHI EA ’12. ACM, 2012,
pp. 1985–1990.

[17] Z. Marquardt, J. a. Beira, N. Em, I. Paiva, and S. Kox, “Super mirror:
A kinect interface for ballet dancers,” in CHI ’12 Extended Abstracts
on Human Factors in Computing Systems, ser. CHI EA ’12. ACM,
2012, pp. 1619–1624.

[18] T. Anderson, “KinectServer,” https://kinectserver.codeplex.com/, 2011.
[19] P. Kalogiros. (2012) KinectJS. http://kinect.childnodes.com/.
[20] MIT Media Lab. (2013, April) Depthjs. http://depthjs.media.mit.edu/.
[21] V. Pterneas. (2013, December) Kinect and HTML5 using WebSockets

and Canvas. http://goo.gl/KLFwuD.
[22] Microsoft Open Technologies, Inc., “Kinect Common Bridge,” https:

//github.com/MSOpenTech/KinectCommonBridge, 2014.
[23] W. Verweirder, R. Gerbasi, and J. Imhof. (2014) AIRKinect Extension.

http://as3nui.github.io/airkinect-2-core/.
[24] Occipital, Inc., “OpenNI,” http://structure.io/openni, 2015.
[25] P. Teixeira, “Kinect in the Browser using Node.js,” http://metaduck.

com/09-kinect-browser-node.html, 2015.
[26] Intrael, “Google Code,” https://code.google.com/p/intrael/, 2011.
[27] npm Inc., “openni-browser,” https://goo.gl/OB34cm, 2015.

2015 XLI Latin American Computing Conference (CLEI)

[28] Octo Technology, “jKinect,” http://jkinect.com/, 2014.
[29] Motion Arcade Inc., “Zigfu Development Kit - ZDK,” http://zigfu.com/

en/zdk, 2015.
[30] Google, “Chrome,” https://www.google.com/chrome, 2015.
[31] Microsoft, “Internet Explorer,” https://microsoft.com/ie, 2015.

[32] Opera Software, “Opera Browser,” https://www.opera.com, 2015.
[33] Mozilla, “Firefox,” https://mozilla.org, 2015.
[34] Apple, “Safari,” https://www.apple.com/safari/, 2015.
[35] Mr. Doob. (2015, August) stats.js. https://github.com/mrdoob/stats.js/.
[36] David Catuhe. (2015, August) babylon.js. http://www.babylonjs.com/.

2015 XLI Latin American Computing Conference (CLEI)

