
Cooperative estimation of Vehicular Traffic using
Mobile Applications

Alfredo Campuzano
Facultad Politécnica

Universidad Nacional de Asunción
San Lorenzo - Paraguay

acampuzano@outlook.com

Rubén López
Facultad Politécnica

Universidad Nacional de Asunción
San Lorenzo - Paraguay
rubenlop88@gmail.com

Joaquín Lima
Facultad Politécnica

Universidad Nacional de Asunción
San Lorenzo - Paraguay
joaquin.lima@pol.una.py

Abstract—The increasing amount of vehicles in developing
countries, where its cities do not have a well-planned road in-
frastructure nor installed technology to monitor traffic conditions,
tends to make difficult the daily traffic and to reduce the quality
of life. Because of this, collect and analyze traffic information in
an inexpensive and easy manner becomes necessary. This paper
presents the implementation details of a system called Autotracks,
which collects information from vehicular traffic through mobile
devices in order to approximate the traffic conditions in real
time. A Floating Car Data approach is used in combination with
activity recognition to monitor the location of users in moving
vehicles. The real path of the vehicles is approximated by using a
Map Matching process. Then, all the trajectories are aggregated
in order to approximate the traffic condition in the last period
of time and finally the traffic status information in real time is
obtained.

Keywords—Map Matching, Floating Car Data, GIS, Activity
Recognition, Traffic State Estimation

I. INTRODUCTION

Traffic congestion is one of the most serious problems in
urban areas nowadays, the continuous increase of vehicles
in traffic, the elevated use of particular cars and the lack
of town planning are some factors that negatively affect life
quality of its citizens. In addition, many developing countries
have no traffic control systems due to the high investments
cost that are required. Therefore, the possibility to collect
and analyze information on traffic in an inexpensive and easy
manner becomes evident. Traffic information systems based on
Floating Car Data (FCD) have proven to be a viable alternative
for obtaining this information efficiently. [1], [2].

Present FCD systems are based on the use of probe vehicles
equipped with GPS sensors. For this purpose, taxi fleets [1], [2]
and cars with GPS devices installed by insurance companies
[3] have been used as probe vehicles. However, in developing
countries there are no public programs or private efforts that
promote the use of such systems.

Alternatively, the collecting of FCD information can be
based in GPS devices of drivers’ smart phones. This kind
of applications has already been used for vehicle tracking
[4], predicting arrival time of buses [5] and for travel time
estimation [6]. In such cases, these studies have demonstrated
the feasibility of using this technology to estimate the traffic
conditions in real time and some of them proposes a penetra-
tion between 2 and 3% to provide an accurate estimation of
traffic flow speed [7], [8].

To estimate a traffic condition, the first step is to determine
the trajectory of vehicles through the city streets, this process
is known as Map Matching (MM). There is a great variety
of MM algorithms, from the simple ones, based only on
geographic information [9], to the complex ones, based on
statistical models and other advanced techniques [10], [11].
Due to the limitations in mobile platforms, such as battery
consumption restrictions, limited or intermittent connectivity,
accuracy errors, among others, the use of specialized MM
algorithms result appropiate to process sparse and inaccurate
samples [12].

This paper presents an implementation of a system to
estimate traffic conditions in real time using smart mobile
devices. The proposed solution is based on FCD information
that is collected by a mobile application called Autotracks,
which is installed in smart devices and periodically sends
the collected FCD information to a central server. To address
the impact of battery consumption, an activity recognition
mechanism is applied in order to track the users only when
they are in moving vehicles. Later, the collected trajectories are
processed using a MM algorithm. The resulting information is
stored in a GIS database and then is aggregated in order to
approximate the traffic condition.

The rest of the paper is organized as follows: Section II
describes the techniques used to collect traffic information.
Section III describes the MM problem and the different algo-
rithms that exists today. Section IV explains the fundamental
parameters of traffic flow. Section V presents the proposed
solution, its architecture, the selected techniques used in each
step of the process. Section VI describes the evaluation of the
obtained experimental results. Finally, Section VII presents the
conclusions of this paper and the propose of future works.

II. TRAFFIC DATA COLLECTION

In present exists a variety of technologies for traffic data
collection. These technologies can be splitted into two cate-
gories. The first one is called in-situ technologies and takes
traffic data through detectors installed within or over the way.
The second one, called Floating Car Data (FCD), obtain traffic
data using probe vehicles equipped with measuring devices
[13].

The in-situ traffic detectors technologies are based on data
collection by dedicated devices for this purpose, which are
physically arranged in places subject to measurement. They
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are divided into two categories: a) intrusive technologies,
which are mounted in or below the surface of the routes
and whose installation and maintenance causes a potential
disruption of traffic (e.g. pneumatic tubes and magnetometers),
and b) non-intrusive technologies, which are mounted above or
on the surface of the routes and whose installation and mainte-
nance does not generate a traffic disruption (e.g. photographic
or video cameras).

In other hand, many traffic management systems use
devices mounted on vehicles, known as Automatic Vehicle
Location (AVL). These devices can provide two types of
information: a) location information, identifying vehicles that
cross certain points in the net of streets, or b) continuous
information, identifying the vehicle routes through the streets.
Probe vehicles can be equipped with AVL devices or use
mobile devices as AVL devices when the user travels in a
car.

Some FCD-based systems take into account the recollec-
tion and processing of traffic data obtained in real time through
AVL devices. All vehicles equipped with these devices act as
mobile sensors in the street network. Data such as vehicle
locations, speed and direction of travel are recollected for its
processing. Then, useful information, such as the traffic con-
dition and alternative routes, can be calculated and distributed.

III. MAP MATCHING

The process of identifying the real path followed by a
vehicle on a street network from imprecise samples of its
location is known as Map Matching (MM). This process is
used in a wide range of services and geographic information
systems, such as predicting user trajectories [14], in-vehicle
navigation systems [11], monitoring traffic conditions [6],
estimate bus arrival times [4], among others.

In order to carry out a MM process the following concepts
should be considered:

• Sample or Point: A sample or point p is the set of all
measurements collected by the vehicle in a given time.
These measurements include the vehicles location, its
direction of movement, speed, etc.

• Trajectory: A trajectory T is an ordered sequence of
samples or points that belongs to an observed vehicle and
that is collected during a journey of the same.

• Street Network: A street network G(V,E) is a directed
graph representing the shape and properties of a system
of streets in a particular geographic area. Each vertice
v ∈ V describes an intersection between streets and each
edge e ∈ E represents the form and attributes of a street.

• Reconstructed Path: A reconstructed path R is an or-
dered sequence of interconnected streets through which a
vehicle may have traveled.

Thus, the problem of MM can be defined as follows: Given
a trajectory T and a street network G(V,E), find the path R
which matches T with its more realistic reconstruction over
G(V,E).

According to the information and the techniques used
for its implementation, MM algorithms can be classified as:
1) Geometric, that only use information about the position
and distance between streets and points [9], they are simple

to implement and are often used as an initial step in the
implementation of another algorithms. 2) Topological, which
incorporate topological information about the street network
[12], [15], [16], [17], such as streets connectivity information,
turn restrictions, directions and speed limits. 3) Statistical,
which define probability regions around each point and then
analyze the street segments within these regions [18]. And
4) Advanced ones, which combine the geometric, statistical
and topological techniques with other concepts such as Kalman
Filters, Hidden Markov Models, Fuzzy Logic, among others
[6], [10], [19], [20].

With respect to the time when the data processing is
performed, there are two categories: 1) Incremental or On-line
algorithms, that perform the process of MM as new points
are obtained [6], [19], [16], [17], [10] and are used in real
time applications such as personal navigation assistants. And,
2) Global or Off-line algorithms, that perform the MM process
after all the points have been collected [12], [15], they are
used in traffic analysis applications or in studies about users
behavior.

Depending on the sampling frequency, two more categories
can be identified: 1) high-sampling algorithms, which typically
work with sample intervals in the range of a few seconds
and are generally executed on-line [16], [17], [10]. And,
2) low-sampling algorithms, that work for sampling intervals
of several minutes and are usually executed off-line [12], [15].
In general, all algorithms can work with samples of high or
low frequency, but certain algorithms become less effective as
the sampling frequency decreases.

IV. TRAFFIC MEASURES

Vehicular Traffic (or Traffic for short) is the phenomenon
caused by the flow of vehicles on a road, street or highway.
When traffic flow is higher in a particular area, circulation
congestion occurs and derives primarily in time loss and extra
fuel consumption [21].

The traffic flow measurements can provide useful infor-
mation about its nature. These measures can be classified
mainly in: a) quantity measurements, including density and
traffic volume; and b) quality measurements, such as speed.
In Addition, a measure of traffic flow can be: a) macroscopic,
characterizing the traffic as a whole; or b) microscopic, iden-
tifying the behavior corresponding to individual vehicles. The
main measures for traffic flow are: speed, volume, and density
[22]

The speed is defined as the traveled distance per time
unit. The observed speed usually varies from one vehicle to
another. To represent this variation, several types of speed can
be defined [22]. The most important are:

1) running speeds, it refers to the observed average speed for
a route whenever the vehicle is in motion, not considering
the time intervals in which the vehicle is stationary.

2) journey speed, which is given by the distance between
two points, divided by the total time used by the vehicle
to complete the trip, including the time that the vehicle
is momentary stopped.

3) time mean speed, defined as the average speed of move-
ment of all vehicles passing through a point on the road
over a period of time.
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4) space mean speed, defined as the average travel speed of
all vehicles passing through a section of the road for a
specified period of time.

The volume is defined as the number of vehicles passing
through a road during a time interval. The measurement is
carried out by counting the number of vehicles passing through
a particular point for a defined time.

The density is defined as the number of vehicles occupying
a length of the road or lane in a given time and is usually
expressed in vehicles per kilometer.

The most relevant measure for estimating real-time traffic is
speed. This information is generally used to reduce congestion
on the roads, helping drivers to make decisions based on the
traffic conditions.

V. ARCHITECTURE

The proposed solution is based on FCD information that
is obtained by mean of mobile devices. The FCD information
is processed on the server side using a MM algorithm and the
result is stored in a GIS database in order to approximate the
traffic condition.

Figure 1 shows the modular architecture of the developed
system. The system has three main components: 1) a GIS
database that stores the street map and the recollected tra-
jectories of the vehicles, 2) a Mobile Application that captures
FCD information about the path traveled by the vehicles, and
3) a Server-side Application that processes the recollected data
and calculates the traffic condition.

Server side app. GIS database

Internet

Web application for consulting

Autotracks mobile application

Figure 1: Modular Architecture of the system.

A. Data Storage

In order to generate information about the traffic in a
particular geographic area, both a street map and a set of
paths obtained by FCD mechanisms over a period of time are
necessary.

The street map is obtained from Open Street Maps and
stored in a GIS database as a directed graph, where the vertexes

correspond to street intersections and the edges correspond to
segments of streets.

The information of user trajectories are stored in the GIS
database in the following tables:

1) Locations: stores the location data received from the
mobile application. Date, time, latitude, longitude, speed,
direction, accuracy, altitude and trajectory to which it
belong.

2) Trajectories: a set of sample locations that serve as input
for the process of MM. Each user trajectory have an input
in this table.

B. Implementation of FCD

The FCD information is obtained from a mobile application
called Autotracks1 and that was developed as part of this work.
This application captures, stores and periodically sends the
user trajectories. For this purpose, Autotracks has three main
functions:

1) Activity recognition: The activity recognition is used to
determine the action that a person is doing based on a pattern
of movements observed by the sensors of its mobile device,
such as the accelerometer, the gyroscope and the GPS. In
Autotracks an implementation provided as part of Google Play
Services2, called Activity Recognition3, is used to determine
when a user is in a moving vehicle.

For each activity recognition result, Autotracks checks if
the user tracking is running or not and handles the start or end
of the user tracking according to the detected activity. The
activity detected is stored for its use in the next invocation of
the procedure. The time when the detection result occurs is
also stored. The Algorithm 1 shows the procedures that are
performed in Autotracks for each activity recognition result
that is obtained.

2) Tracking: The user location can be performed by a
mobile device using triangulation of cellphone towers, from
detected WiFi hotspots with known location or by using
GPS sensors. Autotracks automatically work with any of
these options using an implementation called Fused Location
Provider4.

When a location is obtained via GSM or WiFi the speed
information is not available. To address this lack of informa-
tion, the speed is estimated by using the previous location, if
it is available, as follows:

v =
d

t
(1)

where d is the distance between the current location and the
previous one, and t is the elapsed time between these locations.

To prevent erroneous user locations three filtering condi-
tions were considered. The first discards user locations with
low accuracy (> 200m). The second consists in determining
the relative speed between two consecutive user locations, if

1https://play.google.com/store/apps/details?id=py.com.fpuna.autotracks
2http://developer.android.com/google/play-services/index.html
3http://developer.android.com/training/location/activity-recognition.html
4http://developer.android.com/training/location/receive-location-

updates.html
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Algorithm 1 Procedures for Activity Recognition.

1: procedure DETECTEDACTIVITY(activity)
2: inV ehicle = ISINVEHICLE(activity)
3: if inV ehicle then
4: lastState = VEHICLE
5: if TRACKING is not running then
6: Start TRACKING
7: end if
8: else
9: lastState = null

10: if TRACKING is running then
11: Stop TRACKING
12: end if
13: end if
14: end procedure

15: function ISINVEHICLE(activity)
16: if activity == ON_FOOT then
17: return false
18: else
19: Inicialize t with current time
20: if activity == VEHICLE then
21: t_lastDetection = t
22: return true
23: else
24: if lastState == VEHICLE then
25: ∆t = t− t_lastDetection
26: if ∆t ≤ TOLERANCE then
27: return true
28: else
29: return false
30: end if
31: else
32: return false
33: end if
34: end if
35: end if
36: end function

its result greater than a preset value (140km/h) then the newer
location is discarded. The third filter discard new user locations
that are closer to the last one (< 50m). The procedure used to
register a location is described In the Algorithm 2.

3) Sending Data: The application sends user locations data
via Internet to a central server. To reduce battery consumption
caused by the use of the data network, Autotracks temporarily
stores the captured used locations and send them to the server
periodically.

To send the user locations, a fully completed travel is not
necessary. All user locations captured over a defined period of
time may be sent to the server. The rest of the locations of
the same route are sent in the following periods. Thus, partial
trajectories can be used to estimate the traffic in real time.

C. MM Implementation

A Map Matching (MM) process is performed each time that
a trajectory is received in the central server in order to calculate
the approximate path traveled by the vehicle. The applied

Algorithm 2 Procedures for consideration of user locations.

1: procedure RECORD(location)
2: isV alid = ISVALID(location)
3: if isV alid then
4: lastLocation = location
5: end if
6: end procedure

7: function ISVALID(location)
8: Inicialize p with the localizacion accuracy
9: ∆d = DISTANCE(location, ultimaLocalizacion)

10: ∆t = TIEMPO(localizacion, lastLocation)
11: v = ∆d/∆t
12: if ∆d > D_MIN ∧ v < V_MAX ∧ p < P_MAX then
13: return true
14: else
15: return false
16: end if
17: end function

algorithm is known as ST-Matching[12] with the improvements
proposed by [23] and [24].

ST-Matching is a topological algorithm specifically de-
signed to work off-line and with samples of low frequency.
This algorithm consists of three main parts [12]: a) the
Candidate Selection, b) the Spatial and Temporal Analysis and
c) the Result Matching.

Thus, the inputs for the MM process are the street net
and a vehicle trajectory. The result of this processing is an
approximation of the actual path traveled by the vehicle, that is
stored in the GIS database as a input for a posterior estimation
of the actual traffic condition.

D. Traffic estimation

At the end of each MM process, each point of the approxi-
mated trajectory is associated to an edge of the map of streets.
Each point contains the speed at which its corresponding
vehicle had traveled. In order to estimate the actual Traffic
Condition, all associated speed values in each street segment
are used to calculate its corresponding local average speed
respect to an interval of interest ∆t as:

V j
ave(t−∆t, t) =

1

nj
t−∆t,t

nj
t−∆t,t∑

k=1

v̂k(j) (2)

where v̂k(j) is the k-essime estimated speed at street j in
the interval [t−∆t, t], nj

t−∆t,t is the total number of samples
available for the street j during the interval and t is the current
time.

Finally, to represent the calculated information in a simple
way, four possible levels of speed on each street segment were
defined:

1) Red: for speeds between 0 and 14 km/h.
2) Orange: for speeds between 15 and 29 km/h..
3) Yellow: for speeds between 30 and 39 km/h..
4) Green: for speeds of 40 or more km/h.
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Thus, segments of roads on the map are colored according to
their level of speed as seen in Figure 2.

Figure 2: Streets state in Autotracks

VI. EMPIRICAL TESTS AND RESULTS ACHIEVED

This section describes the field tests and the experimen-
tal results obtained. First, a group of empirical tests were
conducted in order to determine the most appropriate values
for the parameters used in the collection of FCD. Then, a
second group of empirical tests were performed in order to
determine the appropriate values for the parameters involved
in the detection of the reconstructed paths. Finally, by means
of the distribution of Autotracks application, we proceeded to
capture and process a set of FCD in order to derive a Traffic
Condition.

A. Deduction of parameters for FCD

For the collection of FCD information, an activity recog-
nition mechanism is used in Autotracks to track the user
locations only when they are in a moving vehicle. This relies
in a parameter called recognition interval that defines the
time interval in which the verification of user’s activity is
performed, and its value determines how fast is detected the
state condition to start or end the tracking. Also is important
to take into account that while shorter this interval is, higher
would be the battery consumption, because the mobile device
must turn on its sensors more often.

In order to determine the appropriate recognition interval
value, the values of 15, 30, 45 and 60 seconds were considered.
For each value, an empirical tests of 30 iterations were
performed in the travel path illustrated by the Figure 3 in two
travel conditions, in a bus and in a private car. The achieved
results of this test are shown in Table I.

Table I: Average startup time of tracking.

Interval (s) Iterarions In bus (min.) In car (min.) Both (min.)

15 30 1.55 1.18 1.37
30 30 1.64 1.30 1.47
45 30 2.59 2.05 2.32
60 30 4.37 2.75 3.66

Based on the test results, the recognition interval of 30
seconds was selected, for being the longest interval that has

Figure 3: Test path for experiments

a good response time and would demand a lower battery
consumption.

During a trajectory, the vehicle may be temporarily stopped
due to various causes, such as in a red light or in a bus stop.
In these cases the tracking should not be erroneously stopped
in order to avoid cuts in the capture of trajectories. Thus, a
tolerance time must be considered. When a stop is detected,
the time of the last of motion detection is considered and the
tracking is stopped only if the tolerance time is exceeded. Is
important to note that a higher tolerance time means that will
be necessary a longer time to stop the tracking and may result
in a negative impact on battery consumption.

Moreover, it is also important to consider the time per-
centage that device monitors the user in relation to the total
duration of its trip, this is called Tracking Rate. The tolerance
time and the recognition interval together influence the real
tracking time, so they must be jointly selected.

With respect to the recognition interval previously selected,
the tolerance time values of 3, 5, 7 and 10 minutes were
considered. Then, a new empirical test of 30 iterations was
performed for each value. The achieved results about the
observed tracking rate for these values of tolerance time
considered are shown in Table II.

Table II: Real tracking rate results

Interval (s) Tolerance (min.) In bus (%) In car (%)

30 3 80.34 89.16
30 5 85.86 91.56
30 7 94.44 96.11
30 10 95.83 97.22

Based on the previous results, the tolerance time of 10
minutes was selected.

B. Verification of effectiveness of MM

The MM process takes as input a set of captured user
locations. The time interval at which these points are obtained
is called sampling interval. A large value of this interval results
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in a fewer number of samples and thus in a lower consumption
of battery, but in turn, a poor approximation of the path could
be obtained. However, with small intervals, a larger sample is
obtained, which increases the quality of the approximation but
results in a higher battery consumption.

Therefore, to measure the effectiveness of MM process, the
amount of points that are correctly assigned to streets must be
taken into account. This effectiveness was observed with values
of 30, 60 and 120 seconds, and for each interval, 30 trips were
done in the path indicated in Figure 3. For each sampling
interval value, the total collected points was considered and
compared to the number of points assigned correctly. The
results can be appreciated in Table III.

Table III: MM process effectiveness

Interval (s) Total points Correct points Hit Rate (%)

30 1227 1141 93
60 594 541 91
120 313 275 88

It can be noted that there is a slight difference in favor of
the 30 seconds interval compared to the 60 seconds interval,
and a slightly larger difference compared to 120 seconds
interval. Based on these results, the 60 seconds interval was
selected.

C. Traffic Analysis

To collect data for the traffic analysis, the Autotracks
mobile application was distributed through Google Play5 and
users results were observed over a 5 week period, in which the
app had an average of 212 active users per day, collecting a
total of 123.419 samples. Figure 4 shows the number of active
users per day during the test period.

5 10 15 20 25 30 35

160

180

200

220

240

260

280

300

Day

U
se

rs

Users

Figure 4: Active users per day

In order to characterize the activity of users over a week,
the distribution of the number of points collected by day and
by time of day was analyzed. Table IV shows distribution of
collected samples per day, showing that Mondays are the days
when most locations are received, while on Sundays fewer

5https://play.google.com/store

locations are received. In general, a greater number of locations
is received during weekdays.

Table IV: Collected locations per day of week

Day Total Points Average

Monday 20262 4052
Tuesday 18385 3677

Wednesday 19361 3872
Thursday 17833 3567

Friday 18808 3762
Saturday 16834 3367
Sunday 11936 2387

Table V shows the distribution of locations collected per
hour during the day. A greater number locations is received
in the morning, between 6 and 9 hours, and in the evening,
between 17 and 19 hours. This difference becomes more
noticeable during weekdays. While during weekends the hours
with the most locations are in the night.

Table V: Collected locations per hour of day

Hour Total Weekdays Weekends

00 1947 1293 654
01 1061 424 637
02 1018 414 604
03 834 368 466
04 821 424 397
05 917 621 296
06 5236 4824 412
07 7931 7117 814
08 9518 8586 932
09 7326 5900 1426
10 4710 3353 1357
11 4904 3307 1597
12 6727 4489 2238
13 5636 3925 1711
14 5190 3546 1644
15 6128 4498 1630
16 5868 4418 1450
17 6744 5287 1457
18 10892 9204 1688
19 9639 8018 1621
20 7506 5815 1691
21 6435 4525 1910
22 4163 2933 1230
23 2214 1360 854

0 2 4 6 8 10 12 14 16 18 20 22
0

10

20
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40

50
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d
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m
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Figure 5: Average speed per hour of day
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Table VI: Average speed per hour of day

Hour Total(km/h) Weekdays(km/h) Weekends(km/h)

00 23.2 22.3 24.9
01 27.8 24.9 29.7
02 30.8 33.1 29.2
03 31.9 36.8 28.1
04 38.2 47.3 31.2
05 33.3 29.9 40.4
06 17.7 16.8 28.5
07 19.5 18.9 24.8
08 18.1 16.9 28.8
09 19.5 17.6 27.4
10 24.3 19.1 24.5
11 21.2 20.3 22.9
12 19 17.8 21.4
13 19.2 18.5 20.7
14 23.6 20.9 29.4
15 22.1 20.1 27.7
16 20.8 19.4 24.9
17 20.2 18.6 26,2
18 16.8 15.9 21.7
19 17.7 16.8 22.1
20 18.4 18.5 18.1
21 18.8 18.8 18.8
22 21.5 22.7 18.8
23 21.8 22.7 20.4
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Figure 6: Comparison of average speed per hour

Finally, the average speed of the vehicle was chosen as
the measure used to characterize the traffic flow,the highest
values are considered best and lowest values are considered
worse. Table VI and Figure 5 present the average speed by
time of day, showing that in the mornings, the lowest average
speed occurs between 6 and 9 am, while in the afternoons, this
happens between 18 to 21 hours. A decrease in the average
speed is observed during midday.

Figure 6 shows a comparison between the average speed
in weekdays and weekends to contrast the difference. During
weekdays lower average speed is observed from 5 am until 19
pm, while on weekends, two periods with low average speed
values are observed, one between 11 and 13 hours, and another
between 20 and 23 hours.

D. Real-time traffic estimation

To approximate the traffic in real time, the average speed
of all the points that have been associated with a particular

street segment during the last hour is obtained. Thus, traffic
information will be available on those streets that have recently
been busy. In contrast, for those streets that do not have
current information, an approximation of their status won’t be
presented. To illustrate this, Figure 7 shows the approximate
traffic status in real time on a weekday between 9 and 17
hours. It can be noted that the status of street segments will
vary throughout the day, according to data collected.

VII. CONCLUSIONS

This paper describes the effective implementation of an
intelligent traffic information system that may be applied as
alternative to approaches that require of installed technology.
Moreover, FCD information is obtained by a mobile applica-
tion that uses an activity recognition approach in order to track
the users only when they are within a moving vehicle.

The experimental results and data obtained during the tests
show that the system is able to generate a valid approximation
of the traffic condition in which it is possible to determine
the peak and average speed and are also consistent with the
everyday user perception.

It it also important to note that with enough users it is
possible to provide a continuous real-time information about
the traffic status. Therefore, the feasibility to estimate traffic
conditions through smart mobile devices, such as smart-phones
and tablets, is demonstrated.

As future work are proposed the following:

• Experiment with FCD information obtained by devices
installed in continuous movement vehicle fleets such as
buses and taxis.
• Implement other types of applications that make use of

the generated traffic information, such as the calculation
of less congested roads, intelligent traffic light control,
among others.
• Analyze the collected data through data mining tech-

niques to identify critical points that may be subject of
improvements.
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(a) 9:00 (b) 10:00 (c) 11:00

(d) 12:00 (e) 13:00 (f) 14:00

(g) 15:00 (h) 16:00 (i) 17:00

Figure 7: Traffic along a street segment during the day
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