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Abstract—In the last decade, research in Computer Vision has
developed several algorithms to help botanists and non-experts
to classify plants based on images of their leaves. LeafSnap is a
mobile application that uses a multiscale curvature model of the
leaf margin to classify leaf images into species. It has achieved
high levels of accuracy on 184 tree species from Northeast US. We
extend the research that led to the development of LeafSnap along
two lines. First, LeafSnap’s underlying algorithms are applied to
a set of 66 tree species from Costa Rica. Then, texture is used
as an additional criterion to measure the level of improvement
achieved in the automatic identification of Costa Rica tree species.
A 25.6% improvement was achieved for a Costa Rican clean
image dataset and 42.5% for a Costa Rican noisy image dataset.
In both cases, our results show this increment as statistically
significant.

Index Terms—Biodiversity Informatics, Computer Vision, Im-
age Processing, Leaf Recognition

I. INTRODUCTION

Plant species identification is fundamental to conduct stud-
ies of biodiversity richness of a region, inventories, monitoring
of populations of endangered plants and animals, climate
change impact on forest coverage, bioliteracy, invasive species
distribution modelling, payment for environmental services,
and weed control, among many other major challenges for
biodiversity conservation. Unfortunately, the traditional ap-
proach used by taxonomists to identify species is tedious,
inefficient and error-prone [1]. In addition, it seriously limits
public access to this knowledge and participation as, for
instance, citizen scientists. In spite of enormous progress in the
application of computer vision algorithms in other areas such
as medical imaging, OCR, and biometrics [2], only recently
they have been applied to this context. In the last decade,
research in Computer Vision has produced algorithms to help
botanists and non-experts classify plants based on images of
their leaves [3], [4], [5], [6], [7], [8], [9], [10], [11], [12].
However only a few studies have resulted in efficient systems
that are used by the general public, such as [13]. The most
popular system to date is LeafSnap [13]. It is considered a
state-of-the-art mobile leaf recognition application that uses
an efficient multiscale curvature model to classify leaf images
into species. LeafSnap was applied to 184 tree species from

Northeast USA, resulting in a very high accuracy method for
species recognition for that region. It has been downloaded by
more than 1 million users [13]. LeafSnap has not been applied
to identified trees from tropical countries such as Costa Rica.
The challenge of recognizing tree species in biodiversity rich
regions is expected to be considerably bigger.

Vein analysis is an important, discriminative element for
species recognition that has been used in several studies such
as [14], [15], [16], [17], [18]. According to Nelson Zamora,
curator of the herbarium at the National Biodiversity Institute
(INBio), venation is as important as the curvature of the
margin of the leaf when classifying plant species in Costa
Rica [19].

This paper focuses on studying the accuracy of a leaf
recognition model based not only on the curvature of the leaf
margin, but also on its texture (in which veins are visually
very important). This is the first attempt to create such model
in Costa Rica.

The rest of this manuscript is organized as follows: Section
II presents relevant related work. Section III and Section IV
cover methodological aspects and experiment design, respec-
tively. Section V describes the results obtained. Section VI
presents the conclusions and, finally, Section VII summarizes
future work.

II. RELATED WORK

In LeafSnap [13] the authors create a leaf classification
method based on unimodal curvature features and similarity
search using k Nearest Neightbors (kNN). This method is
tested against an image dataset from North American trees,
using 184 species in total. Since their system requires images
to have a uniform background, leaf segmentation works by
estimating the foreground and background color distributions,
and then classifying each pixel at a time into one of those two
categories. A conversion to Hue Saturation Value (HSV) color
domain is applied before using Expectation-Maximization
(EM) [20] for the leaf segmentation. A 96.8% of accuracy
is reported by the authors on their dataset with k = 5.
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Researchers in [21] use Local Binary Patterns (LBP) fea-
tures to classify medicinal and house plants from Indonesia.
They extract LBP descriptors from different sample points and
radius, calculate a histogram for each radius length feature set,
and concatenate those histograms, similarly to Histogram of
Curvature over Scale (HCoS) of LeafSnap [13]. As a classifier,
a four layer Probabilistic Neural Network (PNN) is used. Their
dataset consists of two subsets; one comprises 1,440 images
of 30 species of tropical plants, and the other one has 300
images of 30 house plant species. The image background of
the medicinal plants is uniform, while house plant images have
non-uniform backgrounds. For medicinal plants the reported
precision is 77% and for house plants 86.67%, revealing
that using LBP for complex image backgrounds is a suitable
technique.

Authors in [22] use Speeded Up Robust Features (SURF)
features to develop an Android application for mobile leaf
recognition. For the species classification task, SURF features
are extracted from the gray scale image of the leaf. The feature
set is reduced to histograms in order to reduce dimensionality
since the resulting SURF feature vector may be too big. The
precision reported is 95.94% on the Flavia dataset [6], which
consists of 3,621 leaf images of 32 species.

III. METHODOLOGY

This section describes how the leaf recognition process was
set up. Section III-A describes the image datasets used. Section
III-B summarizes the techniques used to segment each image
into leaf and non-leaf pixels clusters. Section III-C presents
several image enhancements conducted, such as cleaning up
undesirable artifacts and elements, stem removal, clipping
and resizing. Section III-D describes the feature extraction
approach for both the curvature and texture model. Finally,
Section III-E presents the species classification metrics and
algorithms used in this research.

A. Image Datasets

An image dataset of leaves from Costa Rica was created
from scratch. To our knowledge, no other suitable Costa Rican
datasets existed before. The dataset has both clean and noisy
images, in order to identify how the amount of noise affects the
algorithms. All images were captured from mainly two places:
La Sabana Park, located in San Jose, and INBiopark, located
in Santo Domingo, Heredia. In most cases, images for both
surfaces of each leaf were taken. The dataset includes endemic
species of Costa Rica and threatened species according to [19].
The complete list of species in the dataset can be found in [23].
The dataset consists of the following two subsets:

a) Clean Subset: Fresh leaf images were captured during
field trips to both La Sabana and INBiopark. If the leaves were
not flat enough, a press was used to flatten them for 24 hours.
A total of 1468 leaf images were scanned. The images have

Figure 1: A Robinsonella lindeniana var. divergens sample
scanned from a leaf sample from INBiopark, using a HP
ScanJet 300 scanner, then cleaned using Photoshop CS6.

Figure 2: A Bauhinia ungulata sample
taken using a Canon PowerShot SD780 IS camera at the

Sabana Park.

a white uniform background and a size of 2548x3300 pixels,
scanned with 300 dpi in JPEG format. Photoshop CS6 was
used to remove shadows, dust particles and other undesired
artifacts from the background. Figure 1 shows a sample of a
cleaned Costa Rican leaf image of this subset. The scanner
used was an HP ScanJet 300.

b) Noisy Subset: Fresh leaf images were captured during
field trips to both La Sabana and INBiopark. No press was
used to flatten them. A total of 2345 fresh leaf images were
captured. This subset was captured against white uniform
backgrounds (normally a sheet of paper). Each image has a
3000x4000 pixel resolution, in JPG format. No artifacts were
removed manually. However as explained in Section III-C
several automated image enhancements were performed both
on the clean subset and the noisy subset. Figure 2 presents
a noisy leaf image sample. The camera used is a Canon
PowerShot SD780 IS.

B. Image Leaf Segmentation

The first step to process the leaf image is to segment which
pixels belong to a leaf and which do not. We used the same
approach as LeafSnap by applying color-based segmentation.

1) HSV Color Domain: When segmenting with color it is
imperative to use the right color domains in order to exclude
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Figure 3: HSV decomposition of a leaf image
The top-left image shows the original sample. The top-right
image shows the Hue channel of the image with noticeable

noise. The bottom-left image shows the Saturation
component and the bottom-right image shows the Value

component.

undesired noise. [13] states how, in the HSV domain, Hue
had a tendency to contain greenish shadows from the original
leaf pictures. Saturation and Value however, had a tendency
to be clean. So we also used those two color components
for leaf segmentation. Figure 3 shows the noise present in
the Hue channel, but also shows how Saturation and Value
are cleaner. This was useful for posterior segmentation using
Expectation-Maximization (EM). We used OpenCV [24] to
convert the original images into the HSV domain. Then, by
using NumPy [25] , we extracted the Saturation and Value
components, which were fed to the Expectation-Maximization
(EM) algorithm.

2) Expectation-Maximization (EM): Once images were
converted to HSV and the desired channels were extracted,
we applied EM to the color domain in order to cluster the
pixels into one of 2 possible groups: leaf and non-leaf groups
[13]. Figure 4 shows several samples of the final segmentation
after applying EM. As shown, EM segments the image into
the leaf and non-leaf pixel groups by assigning a 1 to the leaf
pixels and a 0 to the non-leaf pixels. This method also works
well on both simple and compound leaves. It is important
to highlight that we did not assign weights to each cluster
manually as the work done by [13], because we wanted to
leave the process as automatic as possible. In their work, they
improve the segmentation of certain types of leaves, especially
skinny ones, by manually assigning different weights to each
cluster. Weights play a fundamental role into the segmentation
process as reported in [26].

a) Training: Algorithm 1 describes the process to train
the EM algorithm. We used OpenCV’s implementation of EM.
First we stacked all the pixels of the image matrix into a single
vector. Then we trained the model using a diagonal matrix as
a co-variance matrix, and we assigned two clusters to it, which
internally were translated into two Gaussian Distributions, one
for the leaf cluster and one for the non-leaf cluster. Once
trained, we returned the EM object.

Figure 4: Segmented Samples
After applying EM to different Costa Rican species.

Algorithm 1 EM Training
stackedPixels← ∅
for all pixelRow in image do

for all pixel in pixelRow do
stackedPixels← stackedPixels ∪ pixel

end for
end for
EM ← OpenCV.EM(nClusters = 2, covMatType =
OpenCV.DIAGONAL)
EM.train(stackedPixels)
return EM

b) Pixel Prediction: Algorithm 2 explains how the own-
ing cluster of a single pixel of the image was predicted. Once
the EM object was trained, the OpenCV’s implementation
allowed to compute the probabilities of the pixel belonging
to each cluster. However, for more efficiency, we created a
dictionary containing each unique (Saturation, V alue) pair
as key, and the cluster as value. If the key was not found in the
dictionary, we then proceeded to predict the probabilities for
each cluster, added the key and cluster to the dictionary, and
returned the associated cluster with the biggest probability.

Algorithm 2 EM Pixel Prediction
key ← hash(pixel[S], pixel[V ])
if hash in pixelDictionary then

return pixelDictionary[key]
end if
probabilities← EM.predict(pixel[S], pixel[V ])
pixelDict[key] = probabilities[0] > probabilities[1]
return pixelDict[key]

C. Image Enhancements/Post-Processing

After segmentation of the leaf using EM, some extra work
was needed to clean up several false positives areas. We
followed the process of LeafSnap [13]. First of all, each
image was clipped to the internal leaf size provided by the
segmentation. Then the image was resized to a common
leaf area, followed by a heuristic applied to delete undesired
objects. Finally, the stem was deleted since it added noise to
the model of curvature (not that much to the texture model).

1) Clipping: Before extracting features, a clipping phase
was needed in order to resize the region where the leaf
was present to a common size. The clipping algorithm was
trivial to implement once the contours were calculated using
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Figure 5: Clipping of a Coccoloba floribunda sample
The left image is the original leaf image, and the right one is

clipped to the leaf size.

OpenCV. As shown in Algorithm 3, the minimum and max-
imum coordinates were calculated for all contour x and y
components, followed by a cut of the leaf image matrix to
those resulting minimum and maximum coordinates. The ε
was used to allow posterior algorithms ignore false positives
regions that intersect the border. The results of the Clipping
phase can be seen in Figure 5.

Algorithm 3 Clipping Leaf Portion of the Image
xmin← min(contours.xs)− ε
ymin← min(contours.ys)− ε
xmax← max(contours.xs) + ε
ymax← max(contours.ys) + ε
clipped← image[xmin : xmax, ymin : ymax]

2) Resizing Leaf Area: Once the leaf area had been clipped,
a resize was applied in order to standardize the leaf areas inside
all images. If not, the model of curvature would be affected
negatively since the amount of contour pixels varied signifi-
cantly [13]. Our implementation of the resize was applied to
the whole clipped image. Images may end up having different
sizes, but the internal leaf areas were the same or almost the
same. Algorithm 4 shows how a new width and height were
obtained by calculating the ratio between the current leaf area,
the desired new leaf area, and the current height and width
of the image. Finally, OpenCV was used to resize the clipped
image to a constant leaf size of 100, 000 pixels. This approach
means that the absolute measures of leafs are lost.

Algorithm 4 Common Leaf Area Resize
newLeafArea← 100000
imgArea← height× weight
newImgArea← (imgArea× newLeafArea)/leafArea
wGrowth← weight/height+ weight
hGrowth← height/height+ weight
a← wGrowth× hGrowth
x← abs(

√
4× a× newImgArea/(2× a))

newWidth = wGrowth× x
newHeight = hGrowth× x
return OpenCV.resize(image, newWidth, newHeight)

3) Deleting Undesired Objects: Even when uniform back-
ground images were used, initial segmentation turned out not
to be enough when the image contained undesired objects,
such as dust, shadows, among others. [13] attempted to delete
these noisy objects by using the same heuristic we imple-
mented as shown in Algorithm 5. By using Scikit-learn [27]
we calculated the connected components of the segmented
image. We deleted the ”small” components by area (in pixels).
Small components were normally dust, small bugs or pieces of
leaves, among other things. Once all small components were
deleted, if the remaining was only one then we took that to

be the leaf. If more than one component remained, then we
calculated for each remaining component how many pixels
had intersections with the image margin. We then deleted
the component with the biggest number of intersections.
The thinking behind this is to get rid of components that
were not centered on the image, which tend to be non-leaf
objects. Finally, the component with the biggest area from the
remaining components was taken as the leaf.

Algorithm 5 Deleting Undesired Objects Heuristic
n, components← connectedComponents(segmentedImage)
components← deleteSmallComponents(components, kMinimumArea)
if size(components) == 1 then

return components[0]
end if
inters← empty
areas← empty
for all component in components do
inters← inters ∪ getImageMarginIntersections(component)
areas← areas ∪ getComponentArea(component)

end for
noisyObject← max(inters)
return max(areas− noisyObject)

4) Deleting the stem: We followed the approach for stem
deletion described in [13]. If the stem was left intact, it
would add noise to the model of curvature, given all the
possible sizes the stem may take. Algorithm 7 shows the
procedure. First, a Top Hat transformation was applied to
the segmented image in order to leave only possible stem
regions, as shown in Figure 6. Then all connected components
were calculated from the Top Hat transformed image, and
also their quantity. Then we looped over all the components,
deleting every single one from the original segmentation and
recalculating the new number of connected components. If the
original number of recalculated connected components did not
change upon deletion, that meant the current component was a
good stem candidate (heuristically, a stem does not affect how
many original connected components there are). Once all stem
candidates were calculated, the one with the biggest area and
largest aspect ratio was chosen to be the stem, as described in
Algorithm 6.

Algorithm 6 Calculate Aspect Ratio Combined with Area
width, heigth← calculateRectangleAround(component)
area← calculateArea(component)
return width/heigth ∗ area

Algorithm 7 Deleting the Stem
candidates← empty
candidatesRatios← empty
possibleStemsImage← topHatTransformation(segmentedImage)
n, components← connectedComponents(possibleStemsImage)
for all component in components do
tempSegmentation← delete(component, segmentedImage)
currentN ← connectedComponents(tempSegmentation)
if currentN = n then
candidates← candidates ∪ component
candidatesRatios ← candidatesRatios ∪
calculateAspectRatio(component)

end if
end for
bestCandidate← candidates[max(candidatesRatios).index]
segmentedImage← delete(bestCandidate, segmentedImage)
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Figure 6: Top Hat Transformation applied to a segmented
compound leaf image to detect the stem of the leaf.

D. Leaf Feature Extraction

Feature extraction was designed and implemented consid-
ering three main design goals:

• Efficiency: algorithms should be fast enough to support
future mobile apps.

• Rotation invariance: the leaf may be rotated by any angle
within the image.

• Leaf Size Invariance: datasets contain different sizes of
leaves and users can capture images independently of the
relative size of leaves.

Two different feature sets were calculated. The first one
captures information about the contour of the leaf, while the
second one captures information about its texture. Section
III-D1 describes how we implemented Histogram of Curvature
over Scale (HCoS) [13] to extract contour information. Section
III-D2 describes how we implemented Local Binary Pattern
Variance (LBPV) to extract texture information. Both mod-
els generate histograms that are suitable for distance metric
calculations.

1) Extracting contour information (HCoS): The model of
curvature used by LeafSnap comprises several steps. Previ-
ously explained segmentation and post-processing resulted in
a mask of leaf and non-leaf pixels. The non-leaf pixels have
values of 0, and the leaf pixels have values of 1. First, the
different contour pixels were found, then 25 different masks
with disk shapes were applied on top of each contour point,
providing both an area of the intersection and an arc length.
Then all calculations at each scale were turned into a his-
togram, resulting in 25 different histograms per image, one per
scale. Finally, the 25 resulting histograms were concatenated,
conforming the HCoS.

a) Contours: On a binary image (resulted from the pre-
vious segmentation), the OpenCV implementation of contour
finding worked very well, based on the original algorithm of
[28] for contour finding. The algorithm generated in a vector
of pairs (x, y) that represent the coordinates where a contour
pixel was found. A contour pixel can be defined as a pixel
which is surrounded by at least another pixel with the opposite
color of it. Figure 7 shows in red the contour pixels detected
in the original image, calculated from the segmented mask.
Notice how shadows affect the contour algorithm, since they

Figure 7: Croton niveus contours
extracted using OpenCV.

0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0

Figure 8: A filled disk of radius=2 pixels
used to calculate area of the intersection with the leaf

segmentation.

were not segmented perfectly.

b) Scales: The original algorithm of [13] makes use of
25 different scales, creating one disk per scale. We imple-
mented a discrete version of the disks making use of matrices
based on [29], whose code is available in Matlab 1.

The disks used are actually matrices of 1’s and 0’s. They
were applied as masks over specific parts of the segmented
leaf image (mostly contour points). The idea was to count
how many pixels intersected the segmented image and each
disk mask. We created two different types of disks. The first
type is filled up with 1’s, as shown in Figure 8. It is used to
measure the area of intersection. The second type is more like
a ring, where 1’s are present only in the circumference of the
disk (see Figure 9). It is used to determine the arc’s length of
the intersection of the disk with the leaf, at a given contour
point.

Once all disks were created for both area and arc length

1https:www.ceremade.dauphine.frp̃eyrenumerical-
tourtoursshapes 4 shape matching

0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
0 1 0 1 0
0 0 1 0 0

Figure 9: An unfilled disk (ring) of radius=2 pixels
used to calculate arc length of the intersection with the leaf

segmentation.
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Figure 10: Area disk applied
to a Croton niveus sample at an specific pixel of the contour,

with radius=18.

versions, we applied them to each pixel of the contour vector,
as shown by Algorithm 8.

Algorithm 8 Area and Arc Length Vector Calculation
arcs← empty
areas← empty
for all pixel of the contour vector do

for all areaMask, arcMask = 1 to 25 do
center areaMask, arcMask at current contour pixel
area← count(areaMask ∩ segmentation)
areas← areas ∪ area
arc← count(arcMask ∩ segmentation)
arcs← arcs ∪ arc

end for
end for

Figure 10 shows how one specific area disk was applied
to the segmented image, for an specific scale (radius=18 in
this case), at a given contour pixel. The gray area shows
the intersection of pixels with the leaf segmentation. This
procedure was then repeated over all the pixels from the
contour vector in the same way.

c) Histograms: Using NumPy at each scale, a histogram
was created from all the values generated from all contour
pixels, as described by Algorithm 8. We used histograms of 21
bins, as [13] did. This means a total of 25 different histograms
were created, each with 21 bins, per image. At each scale, each
histogram was normalized to unit length. Then, all histograms
were concatenated together (both the 25 for area and 25 for
arc length), generating what [13] describes as the Histogram
of Curvature over Scale (HCoS).

2) Extracting texture information (Local Binary Pattern
Variance (LBPV)): We aimed at improving the model of
curvature by adding texture analysis. We used a Local Binary
Pattern Variance (LBPV) implementation called Mahotas [30]
that is invariant to rotation, multiscale, and efficient. This
implementation of LBPV is based on the algorithm of [31]
and makes use of NumPy libraries to represent the image
and the resulting histograms. It works on gray images, so we
used OpenCV to convert the Red Green Blue (RGB) images
to gray scale images. The LBPV approach detects micro
structures such as lines, spots, flat areas, and edges [31]. This
is useful to detect patterns of the veins, areas between them,
reflections, and even roughness. Figure 11 shows what two
different LBPV implementations look like. The upper image
shows a radius = 2, pixels = 16 (R2P16) implementation,

Table I: Variants of LBPV

Variant Radius Pixels

R1P8 1 8
R2P16 2 16
R3P16 3 16
R1P8 & R2P16 1 and 2 8 and 16
R1P8 & R3P16 1 and 3 8 and 16
R3P24 3 24

Figure 11: LBPV patterns of a Croton draco sample. The
upper image corresponds to a radius = 2, pixels = 16
(R2P16) and the lower one to a radius = 1, pixels = 8

(R1P8) pattern.

and the one below shows a radius = 1, pixel = 8 (R1P8)
pixel implementation. The different variants of the LBPV used
are shown in Table I. In some cases we concatenated two
histograms of different scales such as R1P8 & R2P16. It is
important to note that we did not use the variant which samples
24 pixels, since it generated too large histograms. We did,
however, run some tests in which we noticed the 24 pixels
variation didn’t add more accuracy, so we decided to ignore
this method.

Just like the HCoS, LBPV generates histograms that can be
used for similarity search. Several histograms were generated
at different radius sizes and different circumference pixel
sampling, in order to validate which combinations provided the
best results. The Mahotas implementation returned a histogram
of the feature counts, where position i corresponds the count
of pixels in the leaf texture that had code i. Also, given that
the implementation is a LBPV, non-uniform codes are not
used. Thus, the bin number i is the i− th feature, not just the
binary code i [30]. Figure 12 describes at a very high level how
the process of extracting the local patterns histograms works.
First, the image is converted to a gray scale image. Then, for
each pixel inside the segmented leaf area, we calculated the
local pattern with different radius and circumference using the
mahotas implementation. Finally, each pattern was assigned to
a bucket in the resulting histogram.

E. Species Classification based on Leaf Images

Once all histograms were ready and normalized, a machine
learning algorithm was used to classify unseen images into
species. We implemented the same classification scheme used
by LeafSnap. The following paragraphs describe how k Near-
est Neightbors (kNN) was implemented.
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Figure 12: Process of extracting LBPV. Each pixel has a
number assigned to it corresponding to a pattern, and the
histogram was created using all those numbers from the

segmented leaf pixels.

Scikit-learn’s kNN implementation was used for leaf species
classification. This process was fed with previously generated
histograms from both the model of curvature using HCoS and
the texture model using LBPV. Additional code was created to
take into consideration only the first matching k species, not
the first k images, as shown by Algorithm 9. The difference
resides in taking into account only the best matching image
per species, until completing the first k species [13].

Algorithm 9 k Species Ranking
neighborImages, distances← knnSearch(histogram, k)
resultSpecies← empty
while each neighborImage and k > 0 do

if not neighborImage.species in resultSpecies then
resultSpecies← resultSpecies ∪ neighborImage.species
k ← k − 1

end if
end while

We used 1 <= k <= 10 in order to measure how different
algorithms behaved as the value of k increased.

F. Distance Metric - Histogram Intersection

We tested the basic Euclidean distance to measure similarity
between histograms, however the results were not encour-
aging. We implemented the histogram intersection shown
on Equation 1, where I(x, y) is the histogram intersection
between a histograms x and y of same size, n is the number
of bins, and xi and yi are each a bin in histograms x and y,
respectively. This distance metric is also normalized to unit
length.

I(x, y) =
n∑

i=1

xi −
n∑

i=1

min(xi, yi) (1)

G. Accuracy

Let E be an identification experiment that consists of a
model M , a set S that contains n images of leaves of n (not
necessarily different) unknown tree species to be identified,
and an integer value k, k ≥ 1. We define hit(M,k, x) as
a boolean function that indicates if model M generates a
ranking in which one of the top k candidate species is a

Table II: Models used in the experiments including curvature,
variants of texture model, and combination of both.

Model Name Description Type

HCoS 25 scales, 21 bins per scale Curvature
R1P8 radius = 1, pixels = 8 Texture
R2P16 radius = 2, pixels = 16 Texture
R3P16 radius = 3, pixels = 16 Texture
R1P8 & R2P16 radius = 1, pixels = 8 &

radius = 2, pixels = 16
Texture

R1P8 & R3P16 radius = 1, pixels = 8 &
radius = 3, pixels = 16

Texture

HCoS & R1P8 &
R3P16

Assigned a factor to curvature
and texture. Factors summed
1, increasing by 0.10

Curvature
and Texture

correct identification of sample x. Equation 2 formally defines
Accuracy(M,S, k).

Accuracy(M,S, k) =
∑

x∈S
hit(M,k, x)

n
(2)

IV. EXPERIMENTS

Several model variations were used in the experiments (see
Table II).

1) Our implementation of LeafSnap’s model of curvature
HCoS.

2) Several scales of the texture model based on LBPV.
3) The combination of HCoS and the best LBPV variant,

which according to our tests was R1P8 & R3P16. This
combination was further disaggregated by assigning dif-
ferent weights to HCoS and the texture model.

One Versus All: One approach to test a model is to
partition a dataset into two datasets: one for training and one
for testing. Another approach is to use One versus All, that is,
each image in a dataset with n elements is considered a test
image and the remaining n−1 images the training subset. We
used both approaches as explained at the end of this section.

Combining Curvature and Texture: When combining two
different models, we faced the issue of having different scales
in the resulting ranking of each model. This was resolved by
normalizing the rankings to unit length.

After normalizing the rankings (one per combined algo-
rithm), we assigned a factor to each combined model in
order to rank the predicted species into a single ranking.
This factor sums 1 in total. However we varied the factor
associated with each model to see the behavior across different
combinations. We used factors of (0.10, 0.90), (0.20, 0.80),
(0.30, 0.70), (0.40, 0.60), (0.50, 0.50), (0.60, 0.40), (0.70,
0.30), (0.80, 0.20), (0.90, 0.10). For example, (0.50, 0.50)
means we gave the same level of importance to each model
on that combination. Algorithm 10 describes how the merge
between two methods was achieved.
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Algorithm 10 Combining Two Rankings
combinedRanking ← ∅
FACTORS ← {0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90}
for all factor in FACTORS do
results← empty
for all species in allSpecies do
distance1← resultsAlgorithm1[species]
distance2← resultsAlgorithm2[species]
results[species] ← (distance1 ∗ factor) + (distance2 ∗ (1 −
factor))

end for
combinedRanking[factor]← TakeBestKDistances(results)

end for

Texture and Curvature Model Experiments

We ran all models M described in Table II, with 1 ≤ k ≤
10, and the following data sets: Costa Rica clean subset (One
versus All, n = 1468), Costa Rica noisy subset (One versus
All, n = 2345), and Costa Rica complete data set (training
set with all 1468 clean images and testing set with all 2345
noisy images). In each experiment, Accuracy(M,S, k) was
calculated for the corresponding dataset S. In addition, for
model HCoS & R1P8 & R3P16, Algorithm 10 was used to
comprehensively consider different weight combinations for
HCoS and the texture model. Table III summarizes the results
obtained.

Processing Times

To understand the duration of the recognition process, we
measured the recognition time for all images from both Costa
Rican noisy and clean subsets, as if a back-end received
images from a mobile app. The measured time includes image
loading, segmentation, stem deletion, normalization, curvature
calculations, texture calculations, and similarity search. It does
not include network related times. We used a MacBook Pro
with an Intel Core i7, 2.8 GHz, and 8 GBs on RAM.

V. RESULTS

A. Analysis of Results

a) Clean Subset: As shown in Table III, the best results
were obtained when k = 10 and the model is 0.5 HCoS
and 0.5 R1P8 & R3P16. The resulting accuracy is 0.945, in
contrast with the accuracy of HCoS which is 0.79. Notice
however that 0.5 HCoS and 0.5 R1P8 & R3P16 is also the
best for all values of 6 <= k <= 10. For 1 <= k <= 5, 0.5
HCoS and 0.5 R1P8 & R3P16 and 0.1 HCoS and 0.9 R1P8 &
R3P16 have very similar levels of accuracy. Figure 13 more
clearly depicts these comparisons.

b) Noisy Subset: Figure 14 clearly shows that 0.1 HCoS
and 0.9 R1P8 & R3P16 has the best accuracy for all values of
k. In addition, the level of accuracy improvement with respect
to HCoS is considerably larger, ranging from 35.2% when
k = 10 to 42.5% when k = 4 as shown in Table V.

Table III: Accuracy obtained when combining curvature and
texture over the clean subset, the noisy subset, and the

complete Costa Rican dataset

Clean

k HCoS
HCoS=a, R1P8 & R3P16=b
a=0.1 a=0.5 a=0.9
b=0.9 b=0.5 b=0.1

1 0.311 0.567 0.563 0.386
2 0.446 0.702 0.702 0.520
3 0.535 0.766 0.785 0.610
4 0.587 0.816 0.822 0.668
5 0.631 0.857 0.854 0.706
6 0.674 0.875 0.881 0.748
7 0.710 0.890 0.909 0.779
8 0.740 0.903 0.924 0.812
9 0.768 0.918 0.937 0.832

10 0.790 0.931 0.945 0.845

Noisy

k HCoS
HCoS=a, R1P8 & R3P16=b
a=0.1 a=0.5 a=0.9
b=0.9 b=0.5 b=0.1

1 0.151 0.519 0.320 0.177
2 0.225 0.638 0.435 0.257
3 0.277 0.701 0.515 0.311
4 0.325 0.750 0.574 0.364
5 0.364 0.783 0.616 0.408
6 0.399 0.810 0.660 0.455
7 0.435 0.830 0.692 0.484
8 0.470 0.844 0.721 0.516
9 0.496 0.858 0.744 0.546

10 0.521 0.872 0.771 0.574

All

k HCoS
HCoS=a, R1P8 & R3P16=b
a=0.1 a=0.5 a=0.9
b=0.9 b=0.5 b=0.1

1 0.070 0.145 0.120 0.084
2 0.119 0.209 0.178 0.133
3 0.148 0.252 0.216 0.165
4 0.176 0.295 0.251 0.201
5 0.204 0.326 0.277 0.224
6 0.228 0.350 0.304 0.249
7 0.253 0.377 0.328 0.277
8 0.273 0.400 0.353 0.299
9 0.295 0.417 0.371 0.320

10 0.318 0.439 0.393 0.336

c) Complete Dataset: As Figure 15 shows, the level of
accuracy is considerably lower for all models, as compared to
the previous two experiments. Even the best model achieves
levels of accuracy in a poor [14.5%, 43.9%] range.

Discussion: These experiments show how, in general, the
combination of HCoS and LBPV consistently increases the
accuracy of HCoS alone. Accuracy declines as the combina-
tion factor assigned to curvature reaches 1. Overall, the best
combination seems to be 0.1 HCoS and 0.9 LBPV. It is also
important to notice how the accuracy is sensitive to the quality
of the dataset. The clean subset has a tendency to improve
the recognition accuracy, in contrast with the noisy subset.
This reflects the importance of good pre-processing and good
segmentation. Shadows, dust, and other artifacts affect the final
accuracy results.
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Figure 13: Accuracy of HCoS Vs Combined Methods
against Costa Rican clean dataset.

Figure 14: Accuracy of HCoS Vs Combined Methods
against Costa Rican noisy dataset.

B. Measuring Significance of the Accuracy Increase

As shown in the previous section there is an increase
in accuracy when texture is added to our implementation
HCoS. This, however, may not be statistically significant.
We proceeded then to apply a Statistical Proportion Test for
Two Samples. Our null hypothesis H0 is that the accuracy
of the implementation of HCoS equals the ones obtained by
combining curvature and texture. In contrast, our alternative
hypothesis H1 is that the accuracy of the implementation of
HCoS is less than the combinations.

Figure 15: Accuracy of HCoS Vs Combined Methods
against the complete Costa Rican dataset. Clean subset used

for training and noisy subset for testing.

d) Proportion Tests on the Clean Subset: Table IV shows
the results obtained for all the proportion tests for the clean
subset. Most combinations of HCoS and R1P8 & R3P16 for
1 <= k <= 10 resulted in very low p-Values, which reject
H0. However a few accuracy increases from 0.9 HCoS and 0.1
R1P8 & R3P16 did fail the test. This means that, as the weight
increases for HCoS, it starts getting non-significant accuracy
increases, which makes sense since it is almost equal to HCoS
alone.

e) Proportion Tests on the Noisy Subset: Table V shows
the results obtained for all the proportion tests for the noisy
subset. All combinations of HCoS and R1P8 & R3P16 resulted
in very low p-Values, which reject H0.

f) Proportion Tests on the Complete Dataset: Table VI
shows the results obtained for all the proportion tests on the
complete dataset of leaf images from Costa Rica. Almost
every single test rejected H0. For k = 1 the results are not
significant.

In all Proportion Tests, by adding texture with a bigger
factor the model improves significantly the accuracy. As the
factor assigned to texture declines, the improvement becomes
statistically insignificant.

C. Processing Time

As shown in Figure 16, times range from 2.76 to 12.81
seconds. However, the median of the elapsed time is 5.70
seconds for the clean subset and 5.66 seconds for the noisy
subset. These are suitable times even for mobile applications
that use the developed back-end.
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Table IV: Proportion Test results over the Costa Rican Clean
Subset

Costa Rica Clean Subset
Confidence Level=0.95

Sample Size=1468
H0: HCoS=HCoS & R1P8 & R3P16
H1: HCoS<HCoS & R1P8 & R3P16

k HCoS HCoS=0.1, R1P8 &
R3P16=0.9 p-Value Reject H0? Accuracy Improvement

1 0.311 0.567 5.65023E-21 YES 0.255
2 0.446 0.702 4.99997E-19 YES 0.255
3 0.535 0.766 2.00608E-15 YES 0.231
4 0.587 0.816 1.21109E-19 YES 0.230
5 0.631 0.857 2.81689E-21 YES 0.225
6 0.674 0.875 9.64321E-21 YES 0.201
7 0.710 0.890 2.70704E-18 YES 0.180
8 0.740 0.903 4.32615E-17 YES 0.163
9 0.768 0.918 6.49779E-16 YES 0.151

10 0.790 0.931 1.14726E-14 YES 0.141

k HCoS HCoS=0.5, R1P8 &
R3P16=0.5 p-Value Reject H0? Accuracy Improvement

1 0.311 0.563 4.32788E-06 YES 0.251
2 0.446 0.702 6.56883E-09 YES 0.256
3 0.535 0.785 1.09341E-11 YES 0.251
4 0.587 0.822 5.88439E-16 YES 0.235
5 0.631 0.854 2.42945E-19 YES 0.223
6 0.674 0.881 4.19306E-23 YES 0.207
7 0.710 0.909 1.18899E-21 YES 0.198
8 0.740 0.924 1.62723E-20 YES 0.185
9 0.768 0.937 7.26426E-20 YES 0.170

10 0.790 0.945 7.84393E-20 YES 0.155

k HCoS HCoS=0.9, R1P8 &
R3P16=0.1 p-Value Reject H0? Accuracy Improvement

1 0.311 0.386 0.976355356 NO 0.075
2 0.446 0.520 0.823819993 NO 0.074
3 0.535 0.610 0.840833982 NO 0.075
4 0.587 0.668 0.26158887 NO 0.082
5 0.631 0.706 0.0201783 YES 0.074
6 0.674 0.748 0.017077481 YES 0.074
7 0.710 0.779 0.002586312 YES 0.069
8 0.740 0.812 0.000201496 YES 0.072
9 0.768 0.832 5.92221E-05 YES 0.065

10 0.790 0.845 3.63353E-06 YES 0.055

Figure 16: Box Plot of leaf image recognition times
simulating a mobile app back-end, for Costa Rican noisy and

clean subsets.

VI. CONCLUSIONS

The addition of texture increases significantly the accuracy
of our implementation of the HCoS. When comparing HCoS
versus the combination of 0.1 HCoS and 0.9 R1P8 & R3P16,
for the Costa Rican clean subset, the improvement ranges
from 14.1% to 25.5%, depending on the value of k. Similarly,
with the noisy subset, the improvement ranges from 35.5%
to 42.5%. These improvements were proved to be statistically
significant in our experiments.

Table V: Proportion Test results over the Costa Rican Noisy
Subset

Costa Rica Noisy Subset
Confidence Level=0.95

Sample Size=2345
H0: HCoS=HCoS & R1P8 & R3P16
H1: HCoS<HCoS & R1P8 & R3P16

k HCoS HCoS=0.1, R1P8 &
R3P16=0.9 p-Value Reject H0? Accuracy Improvement

1 0.151 0.519 1.7283E-129 YES 0.368
2 0.225 0.638 7.7632E-157 YES 0.413
3 0.277 0.701 1.3354E-165 YES 0.424
4 0.325 0.750 6.4313E-182 YES 0.425
5 0.364 0.783 5.3369E-191 YES 0.420
6 0.399 0.810 2.8814E-194 YES 0.411
7 0.435 0.830 5.1936E-187 YES 0.396
8 0.470 0.844 1.3596E-178 YES 0.374
9 0.496 0.858 2.6133E-177 YES 0.362

10 0.521 0.872 5.9603E-173 YES 0.352

k HCoS HCoS=0.5, R1P8 &
R3P16=0.5 p-Value Reject H0? Accuracy Improvement

1 0.151 0.320 1.2405E-75 YES 0.169
2 0.225 0.435 2.2453E-116 YES 0.209
3 0.277 0.515 1.1237E-149 YES 0.238
4 0.325 0.574 7.6123E-168 YES 0.250
5 0.364 0.616 5.4143E-184 YES 0.252
6 0.399 0.660 1.5749E-202 YES 0.261
7 0.435 0.692 5.0885E-199 YES 0.258
8 0.470 0.721 8.0747E-191 YES 0.250
9 0.496 0.744 1.7097E-191 YES 0.248

10 0.521 0.771 2.0950E-191 YES 0.250

k HCoS HCoS=0.9, R1P8 &
R3P16=0.1 p-Value Reject H0? Accuracy Improvement

1 0.151 0.177 2.4494E-26 YES 0.025
2 0.225 0.257 1.9667E-50 YES 0.032
3 0.277 0.311 1.9949E-63 YES 0.035
4 0.325 0.364 4.4262E-79 YES 0.040
5 0.364 0.408 1.5164E-96 YES 0.044
6 0.399 0.455 6.3080E-102 YES 0.055
7 0.435 0.484 8.9291E-112 YES 0.050
8 0.470 0.516 6.4232E-118 YES 0.046
9 0.496 0.546 4.2650E-125 YES 0.049

10 0.521 0.574 9.9417E-134 YES 0.054

The complete dataset experiments demonstrated that poor
accuracy levels are achieved when noisy images are classified
against clean images. We speculate that this is due to the many
enhancements that leaf images underwent before being added
to the clean dataset. First, leaves were pressed for 24 hours
in order to flatten them and thus minimize the presence of
shadows. Secondly, Photoshop was used to manually remove
artifacts. Finally, image enhancement algorithms (e.g., stem
removal) were applied. This result has important implications
if a mobile application is developed, given that users will take
noisy pictures. As a result we are left with two alternatives.
The first one is to use a noisy dataset to train the classifier.
Alternatively a clean dataset could be used but user images
would need to undergo further automated image enhancements
comparable to those performed manually with Photoshop.

VII. FUTURE WORK

A natural next step in this research is to develop a mobile
app that uses the georeference of photographs of leaves as an
additional criterion to classify species. Most modern mobile
phones already include excellent cameras and provide the
option of automatically georeferencing any picture taken with
these cameras. In addition to the reference image dataset such
as the one developed for this research, maps of potential
distribution of species of Costa Rican trees would be needed.
Atta, a comprehensive and fully georeferenced database of
thousands of species of organisms from Costa Rica developed
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Table VI: Proportion Test results over the Costa Rican
Complete Dataset

Costa Rica All Dataset
Confidence Level=0.95

Sample Size=2345
H0: HCoS=HCoS & R1P8 & R3P16
H1: HCoS<HCoS & R1P8 & R3P16

k HCoS HCoS=0.1, R1P8 &
R3P16=0.9 p-Value Reject H0? Accuracy Improvement

1 0.070 0.145 4.3210E-01 NO 0.075
2 0.119 0.209 6.2947E-06 YES 0.090
3 0.148 0.252 1.8102E-10 YES 0.105
4 0.176 0.295 3.2827E-12 YES 0.119
5 0.204 0.326 1.6580E-12 YES 0.122
6 0.228 0.350 6.0361E-13 YES 0.122
7 0.253 0.377 8.0774E-12 YES 0.124
8 0.273 0.400 4.1983E-11 YES 0.126
9 0.295 0.417 5.8190E-11 YES 0.122

10 0.318 0.439 1.0927E-10 YES 0.121

k HCoS HCoS=0.5, R1P8 &
R3P16=0.5 p-Value Reject H0? Accuracy Improvement

1 0.070 0.120 8.2576E-01 NO 0.050
2 0.119 0.178 6.0228E-03 YES 0.059
3 0.148 0.216 1.3785E-05 YES 0.069
4 0.176 0.251 4.9141E-09 YES 0.075
5 0.204 0.277 2.9011E-10 YES 0.072
6 0.228 0.304 1.0408E-11 YES 0.076
7 0.253 0.328 9.4610E-11 YES 0.075
8 0.273 0.353 8.2167E-12 YES 0.080
9 0.295 0.371 2.6311E-11 YES 0.076

10 0.318 0.393 1.6020E-10 YES 0.075

k HCoS HCoS=0.9, R1P8 &
R3P16=0.1 p-Value Reject H0? Accuracy Improvement

1 0.070 0.084 6.9915E-01 NO 0.014
2 0.119 0.133 4.7461E-03 YES 0.014
3 0.148 0.165 3.6781E-04 YES 0.018
4 0.176 0.201 7.3870E-06 YES 0.025
5 0.204 0.224 4.0212E-06 YES 0.020
6 0.228 0.249 7.8066E-07 YES 0.021
7 0.253 0.277 2.8185E-06 YES 0.024
8 0.273 0.299 2.0626E-07 YES 0.026
9 0.295 0.320 1.0903E-07 YES 0.025

10 0.318 0.336 1.6458E-06 YES 0.017

by the National Biodiversity Institute (INBio) 2 and GBIF’s
database 3 are excellent foundations to generate these potential
distribution maps of species. In addition to curvature, texture,
and georeferencing as discriminating factors, morphological
measures of leaves are also frequently used by specialists to
identify plant species. Some of these measures are: aspect
ratio, which is the ratio of horizontal width to vertical length;
form coefficient, which is a numerical value that grades
the leaf shape as between circular (shortest perimeter for a
given area) and filliform (longest perimeter for a given area);
and blade and petiole length. Algorithms to calculate these
measures have already been developed (e.g., WinFOLIA).
However, they have not been integrated in computer vision
systems for automatic identification of plant species.

A crowd sourcing approach could be a very efficient way to
increase the size of the image dataset that currently comprises
66 plant species from Costa Rica. In addition, crowdsourcing
could also be used to clean noisy pictures as a citizen science
project.

Finally, the individual contribution of texture features such
as venation, porosity, and reflection in characterizing a plant
species has not been formally established. A more elaborate
analysis of the leaf texture that disaggregates it into a separate
layer for each these features would help understand and
quantify their individual contribution.

2www.inbio.ac.cr
3www.gbif.org
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