
Extracting Static and Dynamic Structural
Information from Java Concurrent Programs for

Coverage Testing
Rafael R. Prado, Paulo S. L. Souza, George G. M. Dourado,

Simone R. S. Souza, Julio C. Estrella, Sarita M. Bruschi
Department of Computer Systems, University of Sao Paulo, ICMC

Sao Carlos, Brasil
Email: {rafaelrp, pssouza, georgemd, srocio, jcezar, sarita}@icmc.usp.br

Joao Lourenco
Universidade Nova de Lisboa, NOVA-LINCS

Caparica, Portugal
Email: joao.lourenco@fct.unl.pt

Abstract—This paper proposes novel techniques for the ex-
traction of structural information from the source code of Java
concurrent programs for their coverage testing. Such techniques
differ from others because they consider synchronization flow
among processes/threads, distinct paradigms of communica-
tion/synchronization, method calls and pointer manipulation. The
structural information gathered from the source code is kept in
a test model based on a Parallel Control Flow Graph (PCFG)
and helps the generation of an instrumented source code, used
for a future generation of trace files and to replay the concurrent
execution. The results show the techniques can generate both an
instrumented code and a PCFG for Java concurrent programs
effectively, extracting static and runtime information required
for structural testing.

keywords – Testing tools, Concurrent software, Parallel Soft-
ware, Coverage, Structural testing, Java

I. INTRODUCTION

Software testing is a major concern in the development of
complex software systems and, in the current multicore era,
concurrent program testing verifies the quality of this appli-
cation domain. However, the presence of multiple interacting
threads and/or processes make the test models, criteria and
tools used in the context of sequential software unsuitable for
the concurrent setting.

The TestPar project (http://testpar.icmc.usp.br) [1], [2], [3],
[4], [5] aims at the creation of a full infrastructure capable
of providing test models, criteria and tools for the structural
testing of concurrent programs. The current structural testing
criteria developed for the project consider both communication
and synchronization paradigms (shared memory and message
passing) in a unified way [1].

The ValiPar software testing tool [3], [5], [6] analyzes and
modifies the source code to extract structural information from
a concurrent program statically and at runtime so that proper
support can be offered for the testing activity. The previous
instances of ValiPar offer support to the TestPar structural
testing models and criteria, considering either shared memory
or the message passing paradigm individually. MPI [5] and
BPEL [6] ValiPar instances support the message passing
paradigm, while Pthreads [3] ValiPar instance supports shared
memory. Such previous instances do not consider calls of

methods and pointers required for a deeper coverage testing
of multi-paradigm concurrent programs.

The approaches related (described in Section II) are charac-
terized mainly by their focus on specific interaction (commu-
nication/synchronization) paradigms or consideration of only
theoretical aspects. The literature lacks software tools for the
structural testing of concurrent programs that support the usage
of both synchronization and communication paradigms on a
same concurrent program and in a broader sense. None of
the solutions found describe the practical aspects on how to
fill in those testing models with testing elements, i.e. how
the instrumentation and graph generation of typical multi-
paradigm concurrent programs can be implemented.

This paper presents novel techniques to provide more com-
plete sets of required elements and trace files for the structural
testing of concurrent programs that include aspects, such as
pointers, method calls and use of both synchronization and
communication paradigms on the same program. It proposes
a new PCFG (Parallel Control Flow Graph) generation and
new support for trace generation to make static and runtime
information available and compatible for the structural testing
of concurrent program. The techniques have been implemented
in the ValiPar software testing tool for Java concurrent pro-
grams, described in this paper.

The paper is organized as follows: Section II addresses
studies related to our topic, highlighting their main features
and gaps; Section III presents the TestPar test model and
tools and discusses the identification of Java concurrent pro-
gram flows; Section IV describes the extraction of structural
information for PCFG and the trace generation; Section V
evaluates the techniques implemented in the ValiInst module;
finally, Section VI reports the main conclusions and future
work directions.

II. RELATED WORK

Different concurrent software testing approaches related to
our study can be found in the literature. Taylor et al. [7]
propose the Concurrency State Graph to map the concurrency
states (nodes) and transition between states (edges). Yang et

1

2015 XLI Latin American Computing Conference (CLEI)

978-1-4673-9143-6/15/$31.00 c©2015 IEEE

al. [8] describe a Parallel Program Flow Graph (PPFG) to rep-
resent flows of concurrent programs. Chen et al. [9] propose a
hybrid approach to deal with atomicity violations by recording
the data flow at runtime and using an intraprocedural static
analysis to gather data from a source code. New executions
of the program are guided by a summary of such analysis
which determines source code unexplored braches. The HAVE
(Hybrid Atomicity Violation Explorer) software testing tool
offers the support required for the detection of atomicity
violations on shared memory (multi-threaded) Java programs.
Christakis and Sagonas [10] conducted a static analysis to
detect usual types of message passing errors in languages
related to the dynamic process creation and asynchronous
message passing.

JaBUTi [11] is a unit testing tool for sequential Java
programs that uses the program’s bytecode to extract structural
information and instrument it to generate trace files during
the test execution. It handles only control and data flow
information of the tested program. Besides, it tests each
method individually (unit testing), which may be not enough
to reveal concurrency bugs.

The ConTest software testing tool implements the Java
testing of multi-threaded programs by exercising possible in-
terleavings to find concurrency-related bugs [12]. CHESS tool
is based on the definition of concurrency scenarios and uses
model checking to cover all thread schedules in a systematic
way [13]. ConTest and CHESS tools test concurrent programs,
however, they do not use the structural testing approach or
handle concurrent programs that synchronize and communi-
cate using shared memory and message passing paradigms
together.

Some other frameworks and tools help the testing and
analysis processes. Soot [14] is a framework widely used
for Java bytecode manipulation that offers a large variety
of static analysis resources. It provides algorithms for an
effective analysis of tested program that can be applied to
the structural testing activity. However, the actual program’s
structural representation and strategies must be provided by
the developer of the tool for a successful comparison of static
and runtime extracted information.

JUnit (http://junit.org) is a unit testing framework that helps
the developer to write repeatable tests for Java program.
Although it can be used for structural testing, it does not
establish a model or test criteria to be covered or used in
a systematic testing activity. The software tester must identify
the elements to be tested and apply a suitable testing strategy.

JML is a behavioral interface specification language that
enables the specification of invariants and pre- and postcondi-
tions of a module. It can be used by tools, such as assertion-
checking compilers and unit testing tools for the verification
and validation of the tested software behavior [15].

Souza et al. [16] provides a systematic review on concurrent
software testing, which complements the related works with a
larger set of references.

III. STRUCTURAL TESTING OF CONCURRENT PROGRAMS

The structural testing of concurrent programs is based on
well-defined testing steps [16]. Initially, the program source
code is analyzed and instrumented to extract all the required
information (according to a test model). The static analysis
of the program results in a PCFG (Parallel Control Flow
Graph) and the instrumentation enables the tracing of model
information at runtime. The static information is used in the
derivation of required elements and the runtime information is
used for the measurement of the actual coverage of test case
executions.

The test model used here was proposed in [1]. It organizes
the information extracted from the source code as a PCFG
that represents control, data and synchronization flows. If only
the control flow is considered, the PCFG can be defined as a
set of disconnected subgraphs (control flow graphs), each one
representing a thread of the tested system. A control flow graph
(CFG) consists of a set of nodes and edges. Edges link two
sequential nodes belonging to the same thread graph.

The synchronization flow of a concurrent program is rep-
resented by operations of synchronization and communication
and also synchronization edges among threads and processes.
These operations are classified and clustered according to their
semantics (sender, receiver, sender-receiver, blocking, non-
blocking, synchronous and asynchronous) [2].

The data flow is represented by use and definition operations
over data items (i.e. memory regions). Computational and
predicate use already defined for sequential programs [11]
occurs in both a computation statement and a condition
associated with control flow statements, respectively. A use
can be a shared use if the data item is shared among threads,
or a message use if the data element is associated with the
transmission of messages [1].

Information is extracted from a source code as sets of tuples.
For example, a data flow tuple is composed of a data operation
(definition or use) and a target memory position. Required
elements are generated based on sets of tuples, according
to structural testing criteria. Testing criteria act as predicates
guiding the choice of test cases that systematically increase
the coverage of required elements

The ValiPar structural software testing tool automates those
testing activities for the structural testing of concurrent pro-
grams. It consists of four modules, namely ValiInst (instrumen-
tation and PCFG generation), ValiElem (generation of required
elements), ValiExec (test case execution) and ValiEval (testing
criteria coverage evaluation).

The techniques proposed in this paper were implemented
into the ValiInst module, instantiated for Java. Java was chosen
because of its wide use in academic and industrial contexts and
its libraries related to concurrency.

The control and data flows of Java programs have been
extensively investigated for sequential programs [11]. The con-
trol flow considers method calls and conditional and repetition
structures, whereas the data flow is based mainly on local

2015 XLI Latin American Computing Conference (CLEI)

variables, class and instance fields. Each variable has a data
type (primitive or object) and can be handled by either a value
or a reference.

The synchronization flow of Java concurrent programs con-
siders the use of both shared memory and message passing
paradigms. These resources are provided by the standard
library or language built-in structures. 𝑇ℎ𝑟𝑒𝑎𝑑 class is com-
monly used for the creation of threads through the calling
of the 𝑠𝑡𝑎𝑟𝑡() method. The 𝑗𝑜𝑖𝑛() method waits for the end
of a thread execution. Java provides synchronized blocks and
methods, which have the semantics of a mutex, and monitor
methods (𝑤𝑎𝑖𝑡(), 𝑛𝑜𝑡𝑖𝑓𝑦() and 𝑛𝑜𝑡𝑖𝑓𝑦𝐴𝑙𝑙()) to offer the
semantics of condition variables. Other operations with a high
diversity of semantics for shared memory can be found in the
𝑗𝑎𝑣𝑎.𝑢𝑡𝑖𝑙.𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 package, which provides the semantics
of semaphores, barrier and locks.

The message passing paradigm is supported by TCP and
UDP sockets. The interactions among processes can be
synchronous/asynchronous and blocking/non-blocking and
communication involves one or more senders and receivers.
The semantics are available in 𝑆𝑜𝑐𝑘𝑒𝑡, 𝑆𝑜𝑐𝑘𝑒𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙,
𝐷𝑎𝑡𝑎𝑔𝑟𝑎𝑚𝐶ℎ𝑎𝑛𝑛𝑒𝑙 and 𝐴𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠𝑆𝑜𝑐𝑘𝑒𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙
classes.

IV. PCFG GENERATION AND INSTRUMENTATION

The structural testing of concurrent programs requires the
identification of all control, data and synchronization flows,
both statically and at runtime. For example, PCFG must
reliably represent the whole concurrent program being tested.
Similarly, the trace file produced during the instrumented pro-
gram execution must represent the dynamical aspects executed.
The static and runtime information concerning these flows
must be compatible with each other to enable a coverage anal-
ysis after the generation of trace files and required elements.

The Java concurrent program presented in Listings 1, 2
and 3 has been used to describe, without loss of generality,
our solution for the automation of PCFG generation and code
instrumentation addressing the compatibility issues related to
the program flows. It illustrates a master-slave program that
consists of two processes and three threads, which interact
through both message passing and shared memory paradigms.

Listing 1: Master process of the master-slave program. It sends a token to
the first slave program and waits for a token from the second slave.

1 // Master (Process 0 Thread 0)
2 class Master {
3 public static void main(String[] args) {
4 DatagramSocket master = new DatagramSocket();
5 DatagramSocket server = new DatagramSocket(5000);
6 int token = 2;
7 for (int i = 0; i < 2; i++) {
8 MySocket.send(token, master, 4000);
9 token = MySocket.receive(server) + 1; }

10 }
11 } // main
12 }

The master class (thread 0 in process 0) starts transmitting a
token in line 8 to Slave 0 (thread 0 in process 1) in line 9. Slave

0 retransmits the received token (line 10) to Slave 1 (thread
1 in the same process - line 21). Finally, Slave 1 (line 22)
transmits the token back to Master (line 9). The threads in
the same process use a shared buffer properly synchronized
by a binary semaphore (𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒 created in line 5). Slave
0 updates the shared buffer and notifies (release) Slave 1 by
depositing a token in 𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒 (line 10). The processes
communicate with each other through a UDP socket in a
blocking and synchronous way (lines 8, 9, 9 and 22).

Listing 2: Slave process of the master-slave program

1 // Slave 0 (Process 1 Thread 0)
2 class Slave0 {
3 public static void main(String[] args) {
4 DatagramSocket socket = new DatagramSocket(4000);
5 Shared.semaphore = new Semaphore(0);
6 Slave1 consumer = new Slave1();
7 consumer.start(); // thread creation
8 for (int i = 0; i < 2; i++) {
9 Shared.buffer = MySocket.receive(socket) + 1;

10 Shared.semaphore.release();
11 }
12 consumer.join();
13 } // main
14 }
15
16 // Slave 1 (Process 1 Thread 1)
17 class Slave1 extends Thread {
18 public void run() {
19 DatagramSocket socket = new DatagramSocket();
20 for (int i = 0; i < 2; i++) {
21 Shared.semaphore.acquire();
22 MySocket.send(Shared.buffer, socket, 5000);
23 }
24 } // run
25 }

Listing 3: MySocket implementation used in both master and slave processes

1 class MySocket {
2 public static void send(int token, DatagramSocket

s, int port) {
3 InetAddress ip = InetAddress.getLocalHost();
4 byte[] buff =

Integer.toString(token).getBytes();
5 s.send(new DatagramPacket(buff, buff.length,

ip, port));
6 } // send
7
8 public static int receive(DatagramSocket s) {
9 DatagramPacket pkt = new DatagramPacket(new

byte[20], 20);
10 s.receive(pkt);
11 return Integer.parseInt(new

String(pkt.getData()).trim());
12 } // receive
13 } // class MySocket

A. Challenges for the Control Flow Automation

The first automation challenge is related to the control
flow reported at runtime and generated by the static analysis.
𝑀𝑦𝑆𝑜𝑐𝑘𝑒𝑡.𝑠𝑒𝑛𝑑() method (line 2), for example, is used by
both Master and Slave1 threads (i.e. in different parts of the
source code) and its body cannot be ignored in the static
analysis. Besides, the individual testing of 𝑀𝑦𝑆𝑜𝑐𝑘𝑒𝑡.𝑠𝑒𝑛𝑑()
and 𝑀𝑦𝑆𝑜𝑐𝑘𝑒𝑡.𝑟𝑒𝑐𝑒𝑖𝑣𝑒() does not necessarily reveal potential
synchronization and communication defects. The interaction
among 𝑀𝑎𝑠𝑡𝑒𝑟, 𝑆𝑙𝑎𝑣𝑒1 and 𝑆𝑙𝑎𝑣𝑒2 must also be taken into
account in the testing of a concurrent program as a whole.

2015 XLI Latin American Computing Conference (CLEI)

Indeed, for a better testing of concurrent programs, each
method must be considered in the context in which it was
called.

The structural testing of concurrent programs addresses
those requirements by viewing the concurrent program as
a PCFG that contains a single control flow. Each method
call in the PCFG is represented by its method body. This
representation makes each model element explicit and eases
the generation of required elements based on the program’s
data, control and synchronization flows.

Some challenges related to coverage evaluation are raised.
The testing tool must verify in trace files if each required
element, generated statically, has been covered. Therefore,
the runtime information must correspond to the statically
generated information. This is not a trivial process once
methods called multiple times must be considered individually,
as addressed above.

A first solution would be to initially transform the program
by applying an in-lining process to the actual program to
expand each method to its body. The posterior PCFG gen-
eration and program instrumentation would be based on the
transformed program and the information on PCFG would
correspond directly to the information reported at runtime.
However, the method considerably increases the size of the
instrumented program and code transformation complexity.

Instead of such a transformation, our solution addresses this
issue by introducing the hierarchical organization of node ids
and PCFG in-lining. These concepts help the generation of
unique node ids that can be reported statically and at runtime
in a compatible way. Therefore both the size of the resulting
instrumented code and the instrumentation process complexity
are reduced in comparison to the previous solution and no
actual code in-lining is required.

This approach reduces both the size of the resulting instru-
mented code and the instrumentation process complexity in
comparison to the previous solution and requires no actual
code in-lining.

The PCFG generation is based on the original code and
separated into 2 steps. First, the static analysis translates each
method body into a partial Control Flow Graph (CFG). Each
method call or block of continuous instructions inside the
partial CFG is mapped to nodes and labeled with a partial node
id (a integer), which makes them unique within the partial
CFG.

The second step, i.e. the PCFG in-lining, consists in recur-
sive replacements of the method call nodes inside each initial
partial CFGs (i.e. the 𝑚𝑎𝑖𝑛() and 𝑇ℎ𝑟𝑒𝑎𝑑.𝑟𝑢𝑛() methods) by
their partial CFG, which results in a CFG. The partial node
id assigned to the method call node is added at the beginning
of each node id of its partial CFG. Finally, PCFG is created
based on the CFGs of all threads. Therefore, each node id,
associated with the corresponding thread id and process id, is
unique on the concurrent program.

Figure 1 shows the PCFG for the program in Listings 1, 2
and 3 after the application of the technique. Nodes 3.1, 3.2
and 3.3 from process 0 thread 0 and nodes 4.1, 4.2 and

Process 0

Thread 0

Process 1

Thread 0

Thread 1

1

2

3 6

3.1

3.2

3.3 4.1

4

4.1

4.2

5

1

2

7

0

3

4

4.2

5

6

38

1

2

6

4

4.1

4.2

4.3

5

7

Fig. 1: PCFG representation of Listings 1, 2 and 3

4.3 from process 1 thread 1 represent the 𝑀𝑦𝑆𝑜𝑐𝑘𝑒𝑡.𝑠𝑒𝑛𝑑()
method body, while nodes 4.1 and 4.2 from process 0 thread
0 and nodes 4.1 and 4.2 from process 1 thread 0 represent
𝑀𝑦𝑆𝑜𝑐𝑘𝑒𝑡.𝑟𝑒𝑐𝑒𝑖𝑣𝑒(). These nodes are composed of two
numbers. The first denotes the partial node id of the method
calls and the second represents the partial node id of the code
blocks inside the method bodies.

Note 𝐷𝑎𝑡𝑎𝑔𝑟𝑎𝑚𝑆𝑜𝑐𝑘𝑒𝑡.𝑠𝑒𝑛𝑑() (nodes 3.1 from process
0 thread 0 and 7.1 from process 1 thread 1) and
𝐷𝑎𝑡𝑎𝑔𝑟𝑎𝑚𝑆𝑜𝑐𝑘𝑒𝑡.𝑟𝑒𝑐𝑒𝑖𝑣𝑒() (nodes 4.1 from process 0
thread 0 and process 1 thread 1) were replicated due to the
in-lining process. This organization enables the derivation
and evaluation of the required elements in the testing activity.

The instrumentation process enables a compatible node id
generation by the insertion of instructions for the report of
changes in the program control flow as events. This transfor-
mation causes no side effects to the tested program once it
does not modify its original control flow.

𝑉 𝑖𝑠𝑖𝑡𝑜𝑟.𝑣𝑖𝑠𝑖𝑡𝑁𝑒𝑤𝑁𝑜𝑑𝑒() method is inserted
for each control flow change and method call.

2015 XLI Latin American Computing Conference (CLEI)

Additionally, 𝑉 𝑖𝑠𝑖𝑡𝑜𝑟.𝑣𝑖𝑠𝑖𝑡𝐵𝑒𝑓𝑜𝑟𝑒𝑀𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑙𝑙() and
𝑉 𝑖𝑠𝑖𝑡𝑜𝑟.𝑣𝑖𝑠𝑖𝑡𝐴𝑓𝑡𝑒𝑟𝑀𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑙𝑙() are inserted before and
after each method call. The two latter operations, respectively,
push and pop a node id on a stack of partial node ids.
Whenever a method is called, the instrumented program
inserts (pushes) the method call partial node id in the stack
and removes (pops) it after the return. Given the information
provided by this stack, only the partial node id component
must be reported in a new node event. The actual node id is
generated at runtime through the concatenation of prefixes
from the stack and the reported partial node id component.

As an example, consider the 𝑀𝑦𝑆𝑜𝑐𝑘𝑒𝑡.𝑠𝑒𝑛𝑑() method call
on line 8 of Listing 1. The result of this line instrumentation
can be analysed in Listing 4. Firstly, the instrumenter sig-
nalizes a “new node” event with partial node “3” and then
the “method call” event. Inside 𝑀𝑦𝑆𝑜𝑐𝑘𝑒𝑡.𝑠𝑒𝑛𝑑(), the “new
node” events are reported with partial node ids “1”, “2” and
“3”. The actual node ids “3.1”, “3.2” and “3.3” are generated
based on this information at runtime.

The technique helps the testing of typical concurrent pro-
grams in cases whose synchronization and communication
primitives must be analysed and are present in the method
calls. Because the focus of the structural testing of con-
current program is on the testing of synchronization and
communication among threads of a program, it is not the
objective of this technique to give support to all aspects of
programming languages, such as object orientation features.
The full support of some language constructs, such as recursive
calls, is not trivial for the structural testing of concurrent
programs because the number of recursion levels is determined
at runtime. In such a case, the tester can adopt a conservative
approach and inform the number of recursion levels for each
recursive method call in the PCFG generation and program
instrumentation processes. The support to polymorphism in
the testing activity is discussed in [17], [18].

Listing 4: Example of a control flow instrumentation

1 // Master main method (Process 0 Thread 0)
2 Visitor.visitNewNode("3");
3 Visitor.visitBeforeMethodCall();
4 MySocket.send(token, master, 4000);
5 Visitor.visitAfterMethodCall();
6
7 // Method Mysocket.send() instrumentation
8 class MySocket {
9 public static void send(int token, DatagramSocket

s, int port) {
10 Visitor.visitNewNode("1");
11 InetAddress ip = InetAddress.getLocalHost();
12 byte[] buff = Integer.toString(token).getBytes();
13 Visitor.visitNewNode("2");
14 s.send(new DatagramPacket(buff, buff.length, ip,

port));
15 Visitor.visitNewNode("3");
16 }
17 }

B. Challenges for the Data Flow Automation

The trace file and PCFG must contain data flow operations
targeting uniquely identified memory positions. The identifiers
of variables cannot be the only label component for the

structural testing of concurrent programs, as two or more
identifiers can reference the same object. Besides, the same
method can be called multiple times which generates different
memory positions.

We propose the data label attribution based on the allocation
site to consider this scenario and support both the instrumen-
tation and PCFG generation. A data label consists of process
id, thread id from the selected graph and node id, where the
data are allocated. All the components of the data label can
be found in both run and static time. The definition and use of
variables are mapped into operations over the composed data
labels. Listing 5 gathers a sample of data flow information
from the program in Listings 1, 2 and 3.

ValiInst concomitantly identifies data flow and control flow
on both instrumentation and PCFG generation. All necessary
information (e.g. process id, thread id and node id) is provided
to the data operation identified until the parallel control flow
ends.

The instrumentation performed for the data flow is also
based on events. Instructions are inserted in the original
source code for allocation, definition and use events to provide
information in the trace files.

For example, when a variable is allocated, method
𝑣𝑖𝑠𝑖𝑡𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛() is called with runtime
information. At this point, the label is generated from
current node id, thread id and process id and associated
with the runtime information. Each operation over a variable
identified by runtime information is reported as an operation
over a previously created label.

Note the described process and inserted instructions do
not modify variables of the tested program, which avoids
undesirable side effects in the concurrent program behavior.
The possibility of race conditions on the tested concurrent
program is not eliminated by the instrumentation process.

To consider pointer handling, ValiInst ignores the program’s
control-flow graph and assumes instructions are executed in
any order during the pointer analysis (or reference). The
pointer analysis is also context-sensitive because it considers
each method call individually. A more efficient static analysis
may be implemented in a future version to improve the testing
process.

C. Challenges for the Synchronization Flow Automation

Synchronization flow from concurrent Java programs
consists of built-in language resources (e.g. synchronized
blocks and methods) and classes, such as 𝑅𝑒𝑒𝑛𝑡𝑟𝑎𝑛𝑡𝐿𝑜𝑐𝑘,
𝐶𝑦𝑐𝑙𝑖𝑐𝐵𝑎𝑟𝑟𝑖𝑒𝑟 and 𝑆𝑜𝑐𝑘𝑒𝑡, which address different
synchronization and communication paradigms and semantics.

The identification of such primitives cannot be entirely
embedded in the testing tool’s code. Indeed, a large number
of primitives must be handled and others may appear in future
versions of Java language. Besides, each primitive has its
attributes, such as a cluster, a blocking nature (blocking or
non-blocking) and a transmission nature (sender, receiver or
sender-receiver).

2015 XLI Latin American Computing Conference (CLEI)

Our solution is based on the development of a synchro-
nization’s specification that translates every primitive to test-
ing model information. The resulting document contains all
relevant information for the handling of methods or built-in
features with semantics of synchronization and communica-
tion. The role of the testing tool, in this case, is to identify the
primitives and generate PCFG and instrumented code based
on the described properties.

The synchronization specification helps the implementation
of flexible and extensible testing tools. It can explore syn-
chronization operations compatible with the underlying model
without changing the testing tool. This is an advantage in
comparison to approaches that consider only built-in synchro-
nization or implement support to a set of operations directly in
the testing tools code. The analysis of concurrent programs as-
sisted by the synchronization specification generates a uniform
synchronization flow, reproducible statically and at runtime.

The instrumentation also modifies the concurrent
program to enable the controlled execution.
Instructions 𝑣𝑖𝑠𝑖𝑡𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛() and
𝑣𝑖𝑠𝑖𝑡𝐴𝑓𝑡𝑒𝑟𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛(), respectively, are inserted
before and after the operation, with no modifications in their
original semantics. As a result, the execution of selected
synchronizations can be forced and a given execution can be
replayed.

V. EVALUATION

The following evaluation aims at the verification of consis-
tency and performance aspects of the application of the pro-
posed techniques. The ability of ValiPar to detect concurrent
defects, as race conditions is related to the selection of a test
model and testing criteria that address these problems. This
subject, which is not the objective in this study, is presented
and evaluated in [1], [2], [3], [4], [5] for the TestPar test model.

The consistency aspects are related to the correctness of
the resulting set of structural information produced by the
application of the techniques to concurrent programs of differ-
ent complexities. The performance aspects are related to how
these techniques affect instrumentation, PCFG generation and
instrumented program execution in terms of execution time
and size of instrumented files. This information helps in the
determination of the viability of the techniques in the testing
activity as a whole.

The validation involved eight concurrent Java benchmarks,
which represent usual programming structures on concurrent
Java programs of distinct complexity levels (see Table 1).
The concurrent programs were developed according to a
different number of threads and processes, number of bytecode
instructions, synchronization and communication paradigms.
The number of threads and processes ranged from 3 to 441 and
1 to 21, respectively. Both synchronization paradigms were
considered and the number of bytecode instructions ranged
from 244 to 1718.

Producer-Consumer program (PC) considers 50 producers
and 50 consumer threads communicating through a shared

buffer. Greatest Common Divisor (GCD) is a master-slave
program that evaluates the GCD of three numbers. Token Ring
program (TR) is a simulation of the ring network topology that
uses both synchronization paradigms. Master-Slave program
(MS) is described in Section IV. Non-blocking Message Pass-
ing program (NB-MP) represents a client-server program that
uses non-blocking sends and receives considering communica-
tion events. Multithreaded Token Ring program (MT-TR) also
simulates a ring network, however each process creates extra
threads that modify a shared variable. Prime Server program
(PS) is a numerical benchmark for the generation of prime
numbers that uses a client-server approach. Finally, Matrix
Multiplication program (MM) solves a matrix multiplication
using processes and threads.

Each benchmark was submitted to ValiInst for PCFG
generation and program instrumentation and the result were
evaluated. The PCFG generated should contain all program
flows, identify the data with unique labels, each node with
unique node ids and translate the synchronization operations
into a uniform representation. Furthermore, the execution time
of ValiInst and the resulting instrumented programs were
evaluated to show the length of these activities.

ValiInst and the concurrent programs were executed in an
Intel R⃝ Core TM i5-4440 (3.10GHz) machine of 8 GB RAM,
running Java SE 1.7 in an Ubuntu 14.04 Linux operating
system. The tool could handle several combinations of pa-
rameters. The results are provided in Table 1.

Concerning the generation of structural information, our re-
sults show the instrumentation and PCFG generation produced
consistent information for the test model and enabled effective
verification of the coverage. The generation of structural
information for the smaller program (NB-MP) produced 329
tuples, while the generation for the larger one (TR) produced
50,542. All the generated information is consistent with what
was expected and shows ValiInst and the proposed techniques
can produce a large volume of valid information.

To exemplify the ValiInst execution and the proposed tech-
niques, consider Master-Slave program (at Listings 1, 2 and 3).
The application of the proposed techniques is demonstrated in
Listing 5, which shows part of the Slave1 program flow after
the PCFG generation process. The program’s control flow is
correctly translated into a set of nodes and edges. Every node
id, in conjunction with process id and thread id, is unique
when the whole concurrent program is considered.

Listing 5: Sample of flows generated for the Slave1 thread from
Master-slave. The program flow is composed of control flow edges (2 node
ids), data flow operations (a node and a data label) and synchronization flow

operations (node, semantics and cluster).

1 Control flow edges: (4, 4.1), (4.1, 4.2), (4.2, 5)
...

2 Definitions: (2, p1t0n1), (6, p1t0n1), (1, p1t0n1)
...

3 C-uses: (1, p1t0n1), (7, p1t0n1), (6, p1t0n1) ...
4 Synchronizations: (5, BS, SEMAPHORE) ...

The data flow is also translated into a correct set of data
tuples. Every data tuple consists of an operation, a data label
and the node/edge where it occurred. Data operation Definition

2015 XLI Latin American Computing Conference (CLEI)

TABLE I: Detailed description of the concurrent programs adopted and impact of the instrumentation process. Programs adopted: Producer-Consumer (PC),
Greatest Common Divisor (GCD), Token Ring (TR), Master-Slave (MS), Non-blocking Message Passing (NB-MP), Multithreaded Token Ring (MT-TR),

Prime Server (PS) and Matrix Multiplication (MM).

Parameters PC GCD TR MS NB-MP MT-TR PS MM
Threads 101 4 441 3 3 13 7 13

Processes 1 4 21 2 3 4 4 5
Paradigm SM MP Both Both MP Both Both Both

Original Bytecode file size 1718 551 1170 239 244 710 403 602
Instrumented Bytecode file size 6815 1405 4333 773 773 1958 1387 1938

ValiInst Execution Time ms 1245 383 1948 337 330 529 521 551
Original Program Execution Time ms 64 42 232 2018 31,5 52 49 50

Inst. Program Execution Time ms 619 62 1410 2024 59 143 148 135
Data Flow Tuples 11935 571 30119 269 236 1344 707 1770

Control Flow Tuples 4279 176 16979 69 87 611 362 641
Sync Flow Tuples 701 12 3444 10 6 87 50 67

Total of Tuples 16915 759 50542 348 329 2042 1119 2478

(6 p1t0n1) (line 2 of Listing 5), in this context, represents the
definition of a variable allocated in process 1, thread 0 and
node 1 (forming the data label) at node 6.

Finally, the program’s synchronization flow is
correctly converted to generic operations with the actual
synchronization and communication semantics. For example,
𝑆𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒.𝑟𝑒𝑙𝑒𝑎𝑠𝑒() represents a blocking send operation
that matches other operations of SEMAPHORE cluster. The
resulting tuple can be observed in line 4 of Listing 5. This
synchronization operation occurred at node 5 of thread 0
of process 1 and consists of a 𝐵𝑆 (i.e. a blocking send
operation) in the SEMAPHORE cluster.

Listing 6 shows part of the code of Slave 1 (described in
Listing 2) after the instrumentation process. The inserted code
(lines 1, 2, 4, 5 and 7) tracks and reports the program’s flows.
For ValiInst, the tracking process is conducted through the
𝑇ℎ𝑟𝑒𝑎𝑑𝑉 𝑖𝑠𝑖𝑡𝑜𝑟 class, which receives the runtime informa-
tion, translates it into model information and produces the
trace considering the current process, thread and node ids.
𝑣𝑖𝑠𝑖𝑡𝐼𝑛𝑐(𝑆𝑡𝑟𝑖𝑛𝑔) in Listing 6 reports the use and definition
of variable 𝑖, represented at runtime by its actual name and
statically by its allocation site.

Listing 6: Sample of the instrumented code of a thread from Master-slave

1 ThreadVisitor.visitGetStaticObjField(semaphore);
2 ThreadVisitor.visitBeforeSend(1, "BS");
3 semaphore.release();
4 ThreadVisitor.visitAfterSend();
5 ThreadVisitor.visitNewNode("6");
6 i++;
7 ThreadVisitor.visitInc("Slave1.main(String)V", "i");

Listing 7 shows the trace file after the execution of the
instrumented code in Listing 6. The first field of each line in
Listing 7 contains the event type followed by the node where
it occurred and a logical time stamp (which differentiates
multiple executions of a certain node inside a loop, for
example). Line 1 shows a send event that occured at node
5 of thread 0 in process 0 and whose time stamp is 141.
The remaining fields are specific for each type of event. The
synchronization events require operation (i.e. send, receive or
send-receive) and cluster (i.e. semantic group of the operation)
fields, while the data events require a data label field.

The trace file, in conjunction with statically generated model
information (Listing 5), is used in the evaluation of the
structural testing criteria. Each event reported corresponds to
a tuple in the model information because of the application of
the techniques.

Listing 7: Sample of the generated trace file of a thread from Master-slave

1 SendEvent, <5ˆ{0,0},141>, SEMAPHORE, BS
2 NodeEvent, <6ˆ{0,0},142>
3 UseEvent, <6ˆ{0,0},143>, CUSE, p0t0n1
4 DefinitionEvent, <6ˆ{0,0},144>, p0t0n1

The operational cost of the instrumentation and PCFG
generation can be summarized by three main aspects: time
required for the generation of both PCFG and instrumented
program, execution time of the instrumented program and
number of additional bytecode instructions on the instru-
mented program. The total execution time of ValiInst module
changed from 330 to 1948 milliseconds (Table 1). Moreover,
the instrumentation process resulted in compiled files with
280% more instructions than the original ones (Bytecode
(Original) and Bytecode (Inst.) rows in Table 1). Finally, the
execution time of the instrumented program was, on average,
350% longer than the original one (Original program and
instrumented program execution time rows in Table 1).

Both execution time and number of instructions increased
because the structural testing activity requires the report of all
data, control and synchronization operations to be conducted.
Therefore, for each original operation, one or more operations
are inserted and executed for keeping track of the application’s
current state. Although the testing activity is expensive, costs
related to the execution time and number of instructions of the
instrumented code do not affect the structural testing because
the main focus is on the feasibility and availability of a higher
coverage rate.

VI. CONCLUSIONS

The effective structural test of concurrent programs requires
the instrumentation and PCFG generation of the whole con-
current program for the extraction and report of all program
flows. Although several testing approaches can effectively

2015 XLI Latin American Computing Conference (CLEI)

test concurrent programs, none of their implementations as
testing tools support the use of both synchronization and
communication paradigms on the same program. Instructions
on how to structure static and runtime information about the
program flows are often not presented.

The techniques presented in this paper addressed such prob-
lems by describing a simpler but efficient instrumentation and
PCFG generation processes and implementing them for the
structural testing of concurrent Java Programs. The structure
keeps the compatibility between the information in the trace
file and the parallel control flow graphs, therefore, the coverage
of selected test cases can be evaluated. The implementation of
the techniques in ValiInst has shown our approach is effective
when typical concurrent programs are tested.

The results show a stable behavior of ValiInst (even for
larger programs), as all different Java concurrent programs
could be analyzed and instrumented and the source codes were
successfully represented in PCFGs.

ACKNOWLEDGMENT

The authors acknowledge Brazilian funding agencies
FAPESP, CAPES and CNPq for their financial support
(processes 2013/05750-8 and 2013/01818-7).

REFERENCES

[1] P. S. Souza, S. S. Souza, M. G. Rocha, R. R. Prado,
and R. N. Batista, “Data flow testing in concurrent programs
with message passing and shared memory paradigms,” Procedia
Computer Science, vol. 18, no. 0, pp. 149 – 158, 2013, 2013
International Conference on Computational Science. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050913003219

[2] P. S. Souza, S. R. Souza, and E. Zaluska, “Structural testing for message-
passing concurrent programs: anextended test model,” Concurrency
and Computation: Practice and Experience, vol. 26, no. 1, pp. 21–50,
2014. [Online]. Available: http://dx.doi.org/10.1002/cpe.2937

[3] F. S. Sarmanho, P. S. Souza, S. R. Souza, and A. S. Simão, “Structural
testing for semaphore-based multithread programs,” in Proceedings of
the 8th International Conference on Computational Science, Part I, ser.
ICCS ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 337–346.

[4] S. R. S. Souza, S. R. Vergilio, P. S. L. Souza, A. S. Simo,
and A. C. Hausen, “Structural testing criteria for message-passing
parallel programs,” Concurrency and Computation: Practice and
Experience, vol. 20, no. 16, pp. 1893–1916, 2008. [Online]. Available:
http://dx.doi.org/10.1002/cpe.1297

[5] A. C. Hausen, S. R. Verglio, S. R. S. Souza, P. S. L. Souza, and A. S.
Simo, “A tool for structural testing of MPI programs,” in 8th IEEE
Latin-American Test Workshop (LATW 2007), Cuzco, Peru, 2007, pp.
1–6.

[6] A. T. Endo, A. S. Simao, S. R. S. Souza, and P. S. L. Souza, “Web
services composition testing: a strategy based on structural testing
of parallel programs,” in Testing: Academic Industrial Conference -
Practice and Research Techniques (TAIC-PART 2008), Windsor, UK,
2008, pp. 3–12.

[7] R. N. Taylor, D. L. Levine, and C. D. Kelly, “Structural
testing of concurrent programs,” IEEE Trans. Softw. Eng.,
vol. 18, no. 3, pp. 206–215, Mar. 1992. [Online]. Available:
http://dx.doi.org/10.1109/32.126769

[8] C.-S. D. Yang, A. L. Souter, and L. L. Pollock, “All-du-path coverage
for parallel programs,” in Proceedings of the 1998 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
’98. New York, NY, USA: ACM, 1998, pp. 153–162. [Online].
Available: http://doi.acm.org/10.1145/271771.271804

[9] Q. Chen, L. Wang, Z. Yang, and S. D. Stoller, “Have: detecting atomicity
violations via integrated dynamic and static analysis,” Lecture Notes in
Computer Science (LNCS), vol. 5503, pp. 425–439, 2009.

[10] M. Christakis and K. Sagonas, “Detection of asynchronous message
passing errors using static analysis,” Lecture Notes in Computer Science
(LNCS), vol. 6539, pp. 5–18, 2011.

[11] A. M. R. Vincenzi, J. C. Maldonado, W. E. Wong, and M. E.
Delamaro, “Coverage testing of java programs and components,” Sci.
Comput. Program., vol. 56, no. 1-2, pp. 211–230, Apr. 2005. [Online].
Available: http://dx.doi.org/10.1016/j.scico.2004.11.013

[12] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur, “Multithreaded
java program test generation,” IBM Syst. J., vol. 41, no. 1, pp. 111–125,
Jan. 2002. [Online]. Available: http://dx.doi.org/10.1147/sj.411.0111

[13] M. Musuvathi, S. Qadeer, and T. Ball, “Chess: A systematic
testing tool for concurrent software,” Microsoft Research, Tech.
Rep. MSR-TR-2007-149, November 2007. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=70509

[14] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot - a java bytecode optimization framework,” in Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative
Research, ser. CASCON ’99. IBM Press, 1999, pp. 13–. [Online].
Available: http://dl.acm.org/citation.cfm?id=781995.782008

[15] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens,
K. R. M. Leino, and E. Poll, “An overview of jml tools and applications,”
International Journal on Software Tools for Technology Transfer, vol. 7,
no. 3, pp. 212–232, 2005.

[16] S. R. S. Souza, M. A. S. Brito, R. A. Silva, P. S. L. Souza, and
E. Zaluska, “Research in concurrent software testing: A systematic
review,” in Workshop on Parallel and Distributed Systems: Testing, Anal-
ysis, and Debugging (PADTAD 2011), in conjunction with International
Symposium on Software Testing and Analysis (ISSTA 2011), Toronto,
ON, Canada, 2011, pp. 1–5.

[17] R. T. Alexander and A. J. Offutt, “Criteria for testing polymorphic
relationships,” in Proceedings of the 11th International Symposium on
Software Reliability Engineering, ser. ISSRE ’00. Washington, DC,
USA: IEEE Computer Society, 2000, pp. 15–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=851024.856208

[18] A. Rountev, A. Milanova, and B. Ryder, “Fragment class analysis for
testing of polymorphism in java software,” Software Engineering, IEEE
Transactions on, vol. 30, no. 6, pp. 372–387, June 2004.

2015 XLI Latin American Computing Conference (CLEI)

