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Abstract—Several countries in the world are undertaking
an immensely challenging task: successfully perform the so-
called “analogical blackout” of television. In Latin America in
particular, the chosen transmission scheme is, in most cases,
ISDB-T (the Japanese standard, later adapted by Brazil). Key
to the success of this blackout is a thorough understanding of
the technology of choice. The present paper intends to be a
contribution to this understanding: an open, free and software-
based ISDB-T 1-segment receiver. Such receiver may for instance
be used to evaluate improvements to the standard (or different
algorithms for the receivers), or even be used as a measurement
tool (since one has access to the whole receiving chain). In addition
to presenting our implementation, we discuss the technology that
enables the software-based receiver: Software Defined Radio, and
in particular the software framework GNU Radio.

Keywords—Digital television, ISDB, software defined radio.

I. INTRODUCTION

The importance of television is undeniable. Most house-
holds in the world include (at least) a television set. Although
in recent years it has been gradually replaced by other, more
interactive, devices, the time spent by the typical “multiscreen
user” consumer watching television is 113 minutes a day
according to a recent worldwide study [1] (where smartphones,
the most important screen medium, is consumed 147 minutes
a day).

In this context, several countries have undertaken a very
challenging, albeit necessary, task: the so-called “analogical
blackout”. That is to say, the abandonment of the over fifty
years old analogical television transmission scheme, in favor of
a digital counterpart. As it usually happens in these situations,
different proposals were made and more than one standard is
currently in use: the American ATSC (Advanced Television
Systems Committee) [2], the Chinese DTMB (Digital Terres-
trial Multimedia Broadcast) [3], the European DVB (Digital
Video Broadcasting) [4] and the Japanse ISDB (Integrated
Services Digital Broadcasting) [5].

Of special interest to us is ISDB. When Brazil was evalu-
ating which Digital Television (DTV) system to adopt, they
decided to take the opportunity and perform a Technology
Appropriation. To this end, and based on the ISDB standard,
they developed the SBTVD (Sistema Brasileiro de Televisão
Digital-Terrestre) [6]. The ensuing improvements over ISDB
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were later incorporated into the original standard, resulting
in the so-called “ISDB-T International” (or ISDB-Tb). The
latter was then adopted by most South American countries, in
addition to some Central American and Asian countries.

This article bears on a further step on this appropriation:
the development of an open and free receiver for ISDB-T. Such
implementation could for instance, and just to name two exam-
ples, be used to perform measurement campaigns (where these
measurements may be taken anywhere on the receiving chain)
or ease the evaluation of possible improvements to the standard
(a hypothetical ISDB-T2) by the scientific community.

A key technology to achieve this goal is Software Defined
Radio (SDR). The basic idea is to implement as much as pos-
sible of a transmitter and/or receiver in a software which runs
on a PC (or an embedded system). Current implementations
consist of a variable-frequency oscillator, a mixer and a filter,
which together move a portion of the spectrum to baseband,
which is then sampled by an Analog-to-Digital converter (the
case corresponding to a transmission is analogous). These
samples are then fed to a PC, which may process them
arbitrarily (the only limitation being mostly the processing
power of the PC). The result is that it is possible to have,
using the same hardware, from a simple FM radio [7] to a
complete GSM base-station [8], simply by running different
programmes on the PC.

Several hardware platforms are available on the market.
We would like to highlight three: USRP (Universal Software
Radio Peripherical, from Ettus Research) [9], BladeRF (from
Nuand) [10] and HackRF (from Great Scott Gadgets) [11]. All
of them are open to a certain degree, since the drivers used
by the PC as well as the code used by the FPGA/CPLD in
them are open and freely available. Moreover, the hardware
schematics are also available. In any case, there are several
models available, from prices ranging typically from 350USD
to 1500USD. Regarding the FPGA (or CPLD in the HackRF),
it is used to perform the basic baseband processing (such as
filtering). However, and as mentioned before, its code may
be modified so as to include advanced functionalities, such as
FFTs or decoders.

Regarding software, the most prominent development kit
(and by the far the most popular) is GNU Radio [12], which
in addition to being completely free and open, also supports
all the hardware mentioned above. GNU Radio basically
provides a framework where the different blocks that compose
the transceiver may be implemented and interconnected with
relative ease. Moreover, it includes a growing base of already
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Fig. 1. ISDB-T transmission system block diagram.

implemented blocks, ranging from multipliers to demodulators.

Regarding DTV and SDR, there have been some imple-
mentation efforts in the past. In what concerns ISDB-T in
particular, and to the best of our knowledge, the only software
receiver for ISDB-T was presented in [13]. However, it was not
based on GNU Radio, and most importantly, was not released
to the public. Moreover, the project seems abandoned, and our
attempts to contact the authors have failed. We have thus turned
our attention to DVB-T, which is relatively similar to ISDB-T.
The first work in this direction was [14]. However, it shares the
same flaws as [13]: it was not released to the public (and was
not based on GNU Radio). On the other hand, gr-dvbt [15] is
an out-of-tree module (a GNU Radio component which is not
part of the original source tree, typically developed by third-
party programmers) which implements a DVB-T compliant
transmitter and receiver, and which is both open and free.

This paper presents gr-isdbt, a GNU Radio out-of-tree mod-
ule which implements an ISDB-T 1-segment receiver, capable
of demodulating the signal and displaying the multimedia
content in real-time. Its code is open and free, available at
https://github.com/git-artes/gr-isdbt/. The rest of the paper is
structured as follows. After a brief overview of ISDB-T in
the next section, Sec. III presents in more detail GNU Radio,
particularly those components we used for our implementation.
Section IV then discusses gr-isdbt, highlighting those sections
particular to ISDB-T, where the code of gr-dvbt could not be
re-used or had to be heavily modified. Naturally, there are
several aspects of the receiver which are not complete or may
be improved. A discussion on them is presented in Sec. V.
Conclusions in Sec. VI end this paper.

II. THE ISDB-T STANDARD

ISDB-T stands for Integrated Services Digital Broadcasting
- Terrestrial, and is the Japanese digital television standard.
It is based on DVB-T, and was ratified in the early 2000’s,
after the European and the American standards were adopted.
This delay allowed the designers to take into account the
experience gained with the previous digital television systems,
resulting in the most complex, but also the most robust and
versatile standard (although this is obviously the subject of
much debate). As we mentioned in the last section, it was
later adopted and adapted by Brazil: most importantly a new
interactivity middleware named Ginga was defined (instead of
the original BML) and MPEG-4 replaced MPEG-2 for source
coding. The new version of the standard was named ISDB-Tb,
and was later adopted by most South American countries.

Figure 1 shows the entire block diagram of the ISDB-T
transmission system. In what follows we briefly discuss the
specifications of each of the blocks, paying special attention

to those aspects particular to ISDB-T. For more details, the
interested reader should consult [5].

Let us begin by the modulation scheme. Orthogonal
Frequency Division Multiplexing (OFDM) is used over a 6
MHz bandwidth channel. After the OFDM modulation, a
cyclic prefix (CP) is added which length is expressed as a
fraction of the active symbol’s length, Ts. There are four
possible values: 1

4 ,
1
8 ,

1
16 or 1

32 . This CP is a copy of the
last part of the OFDM symbol which is prepended to it.
As we will discuss later, it will be used in reception for
symbol synchronization and frequency correction. Moreover,
over multipath propagation channels, this prepending will ease
equalization (see for instance [16, Sec. 12.4]).

Regarding the number of carriers in one OFDM symbol,
it can be either 211, 212 or 213 (fixed at a power of 2
so as to be able to use the FFT algorithm). However, the
sampling rate (termed fFFT in the standard) is always equal to
512/63 ≈ 8.126 MHz. This means that keeping the total data
rate constant, the operator may choose to use more carriers
but slower symbols in order to immunize the radio signal
from multipath propagation effects, or less carriers but faster
symbols in order to immunize the signal from Doppler effect.
This choice is termed Transmission Mode, and may be either
1, 2 or 3, although generally mode 3 is used.

Focusing on mode 3 from now on, not all the 8192 carriers
are used, but rather 5617, enough to meet the bit-rate and
bandwidth requirements (where a guard interval and zero-
padding is used in the rest of the carriers). This useful spectrum
is in turn sub-divided into 13 sub-bands named segments,
of 432 carriers each. These 13 segments may be used in-
dependently from one another, a feature first implemented
in ISDB-T and called Band-Segmented Transmission OFDM
(BST-OFDM). In particular, in this case, they can be combined
in up to three so-called hierarchical layers (A, B and C),
which transmit different Transport Streams. Moreover, these
groups of segments can be configured to use different forward
error correction (FEC) rates, time interleaving lengths and
modulation schemes.

Although up to three different Transport Streams may be
thus transmitted in the same channel, the typical configuration
uses one segment with very robust transmission parameters
(which for instance allows visualization by mobile users),
while the rest is used with a configuration resulting in a high
data-rate (with HDTV generally in mind). Thus, handheld
receivers (such as cellphones, a market which particularly
interested the ISDB-T designers) should only tune and de-
modulate this single segment, making it possible to work with
lower sample and data rates, and thus, less CPU requirements.
This feature is known as 1-segment (or 1-seg for short).
Receivers capable of tuning and demodulating all segments
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Fig. 2. ISDB-T segmented spectrum and the 1-seg layered configuration.

are known as full-seg. Figure 2 illustrates this segment-based
spectrum division (and the numbering used by the standard)
and the typical 1-seg configuration.

From the 5617 active carriers, there are several which
are used as pilots to assist the receiver in the equalization
process. These so-called scattered pilots (SP) change position
from symbol to symbol to avoid pathological situations (such
as a permanent deep fade in the spectrum), although their
payload is known (which in turn depends on their position).
A particularity of ISDB-T is the virtual absence of continual
pilots (there is a single CP in the biggest carrier). As we
will further discuss later in the article, standard frequency
correction algorithms that rely on this kind of pilots are thus
not adequate in this case.

In addition to these pilots, several carriers are devoted to
transmitting the modulation parameters at use. There are a total
of 204 bits to be transmitted: the so-called TMCC (Transmis-
sion Multiplexing Configuration Control). They occupy fixed
carriers in the OFDM symbol, each of them corresponding to
the same TMCC’s bit, as DBPSK modulation scheme is used.
Although they naturally change from symbol to symbol, we
will use these carriers with identical information to perform
part of the necessary frequency correction as we discuss later.
In any case, 204 OFDM symbols are thus required in order to
receive the complete TMCC, completing a so-called OFDM
frame.

The rest of the blocks are somewhat standard: frequency
and time interleaving of the complex symbols; mapping, bit
interleaving and convolutional encoder are applied to bits; byte
interleaver, energy dispersal and Reed-Solomon encoding may
be regarded as applied to bytes. It is important to highlight
that most of these algorithms are applied separately to each
layer (thus the three parallel paths in Fig. 1), and each layer
may use its own set of parameters.

Table I summarizes what was described in this section
and adds some other extra information. The parameters used
in each layer for the convolution encoding, time interleaving
and modulation scheme for any particular transmission are all
specified in the TMCC.

III. GNU RADIO

GNU Radio [12] is a free and open-source software de-
velopment toolkit that provides signal processing blocks to
implement software radios. GNU Radio is licensed under the
GNU General Public License (GPL) version 3. All of the code
is copyright of the Free Software Foundation.

As we discussed before, a software radio is a radio system
which performs the required signal processing in software
instead of using dedicated integrated circuits in hardware. As

TABLE I. ISDB-T TRANSMISSION SYSTEM AVAILABLE PARAMETERS.

Parameters Values
Total Bandwidth 6 MHz

Number of segments 13

Segments bandwidth 6000/14 ≈ 428.57 kHz

1405 (mode 1)
Number of carriers 2809 (mode 2)

5617 (mode 3)

252 µs (mode 1)
Active symbol duration 504 µs (mode 2)

1004 µs (mode 3)

Guard interval duration 1/4, 1/8, 1/16, 1/32 (of active symbol duration)

Convolutional Code Rate 1/2, 2/3, 3/4, 5/6, 7/8

0, 1, 2, 4 (mode 1)
Time interleaving parameter 0, 2, 4, 8 (mode 2)

0, 4, 8, 16 (mode 3)

Modulation schemes DQPSK, QPSK, 16QAM, 64 QAM

the software can be easily replaced in the radio system, the
same hardware can be used to create many kinds of radios for
many different standards.

Since GNU Radio is software, it can only handle digital
data. For a real deployment an external analog RF hardware
must be used which can shift back and forth the signal to the
desired center frequency and perform the basic filtering. GNU
Radio can be used to write applications to either receive and
process data from digital streams received by the RF hardware
or to push data into digital streams, which are then transmitted
using the RF hardware.

GNU Radio is designed to support signal processing on
continuous data streams from a source to a sink passing
through different signal processing blocks. The stream is a flow
of basic types like bytes, integers or complexes. Each GNU
Radio block defines input and output signatures which specify
the number of input and output streams and their type. The
designer can choose which blocks are needed and how they are
connected to build a flow graph for a particular implementa-
tion. For this purpose, the GNU Radio Companion [17], which
is a graphical user interface tool which allows the creation
of signal processing applications by combining blocks with a
simple drag-and-drop user interface, may be used.

When a flow-graph is executed, the GNU Radio internal
scheduler invokes sequentially a predefined method defined in
each block. This method processes the data stream according
to the block functionality. Communication between blocks is
made through shared memory. The size of the shared memory
buffers is defined by data type and rate of flow.

A software radio system can be constructed by combining
some of the general purpose blocks already provided by GNU
Radio and its contributors. Common elements typically found
in radio systems are available, for instance: filters, channel
codes, synchronization elements, equalizers, demodulators,
coders, decoders. Moreover, GNU Radio provides a relatively
easy way to extend the functionality by writing the specific
blocks needed for a particular implementation. For instance,
our ISDB-T 1-seg receiver, as will be explained in Sec.
IV, uses some generic blocks like filters or FFT, but we
needed to create or adapt some other required blocks such
as: OFDM symbol acquisition, frequency synchronization,
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channel estimation, TMCC decoding, frequency deinterleaver,
time deinterleaver, Viterbi decoder, Reed Solomon decoder,
among other auxiliary blocks. Some of them were similar to
the ones used in gr-dvbt implementation [15], but others had
to be written from scratch.

GNU Radio applications are primarily written using the
Python programming language (the GNU Radio Companion is
actually a front-end that automatically generates Python code).
However, most blocks are written internally in C++: in this
sense, Python may be regarded as the scripting language used
by GNU Radio. Thus, real-time, high-throughput radio systems
can be developed using GNU Radio.

Besides the data flow traversing the graph, normally a
communication system needs to signal some events to other
blocks in the graph. For instance, one block detects the begin-
ning of a OFDM frame in a radio receiver and other blocks
must be notified about this event. Recent versions of GNU
Radio provide both a stream tag and a message passing system
to handle meta data and control information. The stream tag
mechanism allows to add additional information to a particular
sample of a flow. On the other hand, the message passing
system has two main goals: to allow downstream blocks to
communicate back to upstream blocks, and to provide an easier
way to communicate between external applications and GNU
Radio.

Our implementation uses the stream tag mechanism to
signal other blocks the point in the stream where one block
detects the beginning or ending of a frame, the need of resyn-
chronization after missing a OFDM symbol, and other similar
events. Those requirements could have been implemented by
using the message passing system but this option would have
involved adding a message queue to all the downstream blocks
and it could also imply a performance penalty. Moreover, it
is easier to indicate these events with tags, since they are
associated to particular samples.

Another interesting feature useful for a real time system,
where performance is an essential aspect, is the recent Volk
Library [18]. The so-called Vector-Optimized Library of Ker-
nels (VOLK) project from GNU Radio provides a simple
to use, extensible, and architecture-independent programming
tool to enable vectorized mathematical operations. The Volk
library makes extensive use of the SIMD (Single instruction,
multiple data) capabilities provided by moderns CPUs. The
SIMD enabled processors have multiple processing elements
that perform the same operation on multiple data points simul-
taneously. Thus, such machines exploit data level parallelism
which is particularly applicable for processing vectors of data.
For instance, using Volk two arrays of the same length may be
multiplied entry-wise (and the result stored) much faster than
using the standard for loop.

Some of the blocks needed by our ISDB-T 1-seg receiver
frequently need to apply the same operation to a data vector,
thus the use of the Volk library provides a great performance
improvement. To verify this performance improvement, we
tested our OFDM Symbol Acquisition block. The time spent
on the block for processing a data stream was measured,
obtaining a system 54.9% faster with the use of the Volk
library.

Pilots
QPSK (1-seg)

Fig. 4. An example of the received complex symbols. Please note that some of
the points corresponding to the 64QAM are very near to those corresponding
to the QPSK and were also encircled in the figure.

IV. A 1-SEG RECEIVER IMPLEMENTED IN GNU RADIO

Now that we have introduced both the ISDB-T standard
and GNU Radio, let us discuss our implementation. The 1-seg
receiver’s block diagram is shown in Fig. 3 (a screen capture
of the corresponding GNU Radio companion’s flow graph).
As we mentioned before, it takes advantage of some general
purpose blocks such as the Low Pass Filter, the FFT
and the Vector to Stream, but most of them had to be
implemented or adapted by us. We first give an overview of the
complete flow graph, and then focus on the most interesting
blocks and their operation.

The first step is naturally to receive the data from the
corresponding hardware (in this particular case a USRP). As
these devices usually cannot sample at any arbitrary rate, a
rational resampler is used to obtain a sampling rate of fFFT
(cf. Sec. II). Depending on the situation, it may be necessary to
filter-out neighboring channels. For this purpose, a Low Pass
Filter block with a cut-off frequency fc = 2.8 MHz may
be used. After that, the OFDM Sym Acquisition block
performs symbol time synchronization and pre-FFT carrier
frequency offset correction. Once this was performed, as in
every OFDM system, the FFT of the incoming vector has to be
calculated. The Sync And Channel Estimation block
is then in charge of performing the post-FFT carrier frequency
offset correction, channel estimation and equalization. Finally,
the TMCC Decoding block will detect the end of every
OFDM frame (the grouping of 204 OFDM symbols that
transmit a complete TMCC) and perform the TMCC decoding.

It is important to highlight that until this point, our receiver
operates as a full-seg one. That is to say, we are sampling the
whole 13 segments and performing synchronization and the
rest of the tasks for the complete signal. Figure 4 shows an
example where the complex symbols (after synchronization
and equalization) corresponding to all segments are displayed
by our receiver. There are two layers in this case: the one
corresponding to 1-seg (modulated in QPSK) and another
made up of the other 12 segments (modulated in 64QAM).
Pilots, which are modulated in BPSK (and boosted), may also
be appreciated in the figure.

The next block (Subset of carriers) outputs only
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Fig. 3. The GNU Radio Companion flow graph of our ISDB-T 1-seg receiver implementation.

those carriers corresponding to the 1-seg signal. It may thus be
regarded as a hierarchical divisor. A complete full-seg receiver
would roughly include three parallel branches of the blocks
that follow: various deinterleavers, decoders and demapper.
Finally, when the processed bytes arrive to the File Sink
block, the result is a Transport Stream file. It may either be
saved and played (or analyzed) off-line, or be played in real-
time by first creating the file as a pipe, running the flow graph,
and feeding it to, for instance, MPlayer [19].

Some of the most interesting blocks are discussed in detail
in the following sections.

A. Ofdm sym acquisition

When the receiver is processing the samples one by one,
two uncertainties appear: the arrival time of the OFDM symbol
(θ) and the carrier frequency offset (ε), which due to a
difference between the local oscillators in the transmitter and
the receiver may cause a shift of all the sub-carriers. These
two uncertainties lead us to model the received signal r[k] as

r[k] = s[k − θ]ej2πεk/N + n[k],

with s[k] the transmitted signal and n[k] the AWGN added by
the channel.

A classic and relatively simple algorithm that estimates
both θ and ε was proposed by van de Beek et al. in [20].
This algorithm considers an observation interval of 2N + L
consecutive samples, with N the number of samples in one
OFDM symbol (N = 213 in our mode 3 case) and L the
number of samples of the cyclic prefix. Then, two sets are
considered:

I = {θ, . . . , θ + L− 1},
I ′ = {θ +N, . . . , θ +N + L− 1}.

So, I indicates the sample indices corresponding to the cyclic
prefix, and the set I ′ those corresponding to the original data
that is copied in the CP. Naturally, there is a strong correlation
between these samples:

∀k ∈ I : E{r[k]r∗[k +m]} =





σ2
s + σ2

n m = 0,

σ2
se
−j2πε m = N,

0 otherwise.

The remaining samples r[k] such that k /∈ I ∪I ′ are mutually
uncorrelated.

Based on this observation, [20] proposes the following log-
likelihood function for θ and ε

Λ(σ, ε) = |γ(θ)|cos(2πε+ 6 γ(θ))− ρΦ(θ) (1)

where 6 denotes the phase of the complex number,

γ(m) =
m+L−1∑

k=m

r[k]r∗[k +N ],

Φ(m) =
m+L−1∑

k=m

|r[k]|2 + |r[k +N ]|2
2

,

and ρ = σ2
s/(σ

2
s + σ2

n) = SNR/(1 + SNR).

Finally, the maximization of Eq. (1) in the observation in-
terval will solve the receiver uncertainties. In particular, a two-
stage optimization may be performed, where ε is optimized
first as a function of θ:

ε̂ML = − 1

2π
6 γ(θ̂ML), (2)

and the resulting θ is thus

θ̂ML = arg max
θ

|γ(θ)| − ρΦ(θ). (3)

Please note that owing to the periodicity of the cos function,
there are actually infinitely many maxima of ε. We have
assumed here that 0 < ε < 1. This is thus called fractional
frequency correction. The integer part will be corrected in a
different block.

Our implementation works as follows. When synchroniza-
tion has not yet been attained (e.g. the first time the flow
graph is run), Eq. (3) is calculated for the whole observation
period, its maximum is found, ε is calculated through (2),
samples are derotated accordingly (as we mentioned before,
the performance for these operations was remarkably improved
by Volk), and the samples corresponding to the actual symbol
are output.

Once synchronization is established, the position of the
maximum should not change significantly from symbol to
symbol (as well as the value of (3)). We thus only calculate (3)
for a small interval around the previous θ, and proceed accord-
ingly. If this is not the case (e.g. the obtained maximum is too
small when compared to previous values), a re-synchronization
is triggered. We first look for a reasonable maximum in the
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complete observation period. If it is not found, we skip some
samples and proceed as if synchronization was not attained.

Notice that at this point of the receiver we still do not
know the Transmission Mode or the CP length that are being
used, i.e. N and L in the above algorithm. Strictly speaking,
the maximum likelihood estimator has to be calculated for
every Transmission Mode and for every cyclic prefix length,
being the one generating the greater value and a perfect peak
in Λ(σ, ε) the correct configuration. Naturally, since these
values do not change frequently (if at all), they may be found
previously, and the block configured accordingly

B. Sync and channel estimation

For large carrier frequency offsets, we can distinguish
between an “integer” carrier frequency offset ∆fI , being a
multiple of the sub-carrier spacing 1/Ts, and the “fractional”
carrier frequency offset ε we calculated before. The latter, if
left unattended would provoke Inter Carrier Interference. The
former, the one addressed by the present block, represents an
ambiguity regarding which of the 213 carriers output by the
FFT block correspond to each of the transmitted ones, as they
are now shifted by the unknown ∆fI .

In other broadcast technologies such as DVB-T, the pres-
ence of continual pilots (certain fixed carriers which transmit
an alternating complex symbol) makes it possible to correlate
two consecutive OFDM symbols in order to solve this problem.
However, as we mentioned before, in this case that would not
be possible as ISDB-T has no continual pilots. On the other
hand, we may take advantage of the multiple TMCC carriers
that are constantly transmitted at fixed frequency positions.
Although we still do not know what they are transmitting
(i.e. time interleaving parameter, convolutional code rate,
modulation scheme), in a given OFDM symbol they are all
transmitting the same bit.

Suppose there are M TMCC carriers per OFDM symbol
(M = 52 for mode 3), and denote as T [i] : i ∈ {0, . . . ,M −
1} their positions when there is no frequency offset (i.e. at
transmission), and Y [k] the output of the FFT block. Although
the bits transmitted at the carriers corresponding to the TMCC
are the same, the modulation used is DBPSK, where the initial
value for the differential modulation depends on T [i]. This
means that, depending on their position, certain symbols are
either 4/3 or -4/3. Let us then further denote as w(T [i]) this
initial value. It should be clear that the following correlation
is maximized when m = ∆fI :

Γ[m] =
M−2∑

i=0

w(T [i])Y [T [i]+m].w(T [i+1])Y ∗[T [i+1]+m]

(4)

Once we know which carrier is each, it is time for
channel estimation and subsequent equalization. That is to
say, if X[i] is the symbol transmitted at the i-th carrier, then
Y [i] = X[i]H[i], where H[i] is the channel gain on the
corresponding frequency [16, Ch. 12]. We thus have to estimate
H[i] for every carrier and divide accordingly.

This task shall be performed by using the scattered pilots
(SP), as they have predefined positions and values. Neverthe-
less, these positions vary with every new symbol cyclically.

In particular, there are four different possible carrier configu-
rations. A very similar algorithm to the one discussed before
regarding continual pilots is applied to the SPs in order to
detect the current arrangement. Then, H[i] is calculated for
the carriers corresponding to the SPs. The value for the rest is
estimated by a simple linear interpolation.

C. TMCC decoder

At this point, once we have correctly synchronized and
equalized the signal, it is time to decode the TMCC in order
to set the appropriate values for channel decoding and symbol
demapping blocks. We proceed as follows. For any given
OFDM symbol, we demodulate the corresponding bit on every
carrier, and perform a majority voting to take the final decision
of the corresponding bit.

Moreover, in order to decide whether a complete TMCC
was received, we can make use of TMCC synchronization
signal which consists in a 16-bit word that takes either the form
0011010111101110 or 1100101000010001 depending whether
it is an odd or even frame. A buffer with the last 204 bits
is constantly filled and bits 1 to 16 are compared to the
synchronization words presented above. When matched, the
BCH parity code syndrome is computed and if no errors where
found, a new frame start is detected and the TMCC can be read.
This is signaled downstream by a tag, since other blocks make
use of this information (most notably the energy dispersal,
which should be reset with every new OFDM frame).

Finally, the TMCC decoder block is also responsible for
filtering all the control pilots and letting out only the data
carriers reordered increasingly by segments number.

D. Further blocks: demapping, interleaving and decoding

The rest of the blocks are relatively standard, so their
implementation did not cause major problems. In Fig. 3,
after the TMCC Decoder block discussed in the previous
section, the Subset of Carriers block receives every
data carrier but only lets out those corresponding to the 1-
segment transmission. For those carriers, frequency and time
deinterleaving are performed and then symbol demapping fol-
lowed by bit deinterleaving. A QPSK constellation is assumed
in the last two blocks as that is the recommended modulation
scheme for handheld receivers.

After the Viterbi decoder there is a byte deinterleaving and
an energy descrambler. This last stage may be used to test the
correct reception of the signal. As specified in [5, Sec. 3.5], the
byte just before the beginning of a new OFDM frame (signaled
by the tag we mentioned before) should be the synchronization
byte used by the Transport Stream (i.e. 0x47). After that, the
Reed Solomon decoder, which is able to correct up to eight
corrupted bytes, removes the last 16 bytes of redundancy from
every Transport Stream package. Finally, the stream is saved
on the hard drive. Both the Viterbi and Reed-Solomon decoder
were taken from [15] as they are identical to those used by
DVB-T.

Figure 5 shows the full implementation receiving a real
digital terrestrial television transmission and displaying it
online.
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Fig. 5. Our 1-segment ISDB-T receiver working in real time. Note how the
corresponding video and constellation are being displayed.

V. FURTHER DEVELOPMENTS

The last section presented our current implementation of
an ISDB-T receiver on GNU Radio. Naturally, there are
several blocks which may be improved. For instance, regarding
synchronization, we have used the classic algorithm by van
de Beek et al. [20] to perform coarse time and frequency
synchronization. However, there have been several proposals
since (see for instance [21]), and an evaluation of possible
substitutes is in order. For instance, a further estimation of
the residual timing and frequency error may be obtained from
the post-FFT stage (termed “fine synchronization”), which we
have not implemented. The same applies for other blocks, such
as the integer frequency correction or the channel equalization
(see for instance [22] for a recent survey on the latter subject).
It is important to highlight however, that complexity is a crucial
factor here, and that any such substitute should not increase it
significantly. Another aspect we would like to highlight is that
the modular architecture of the receiver (inherited from GNU
Radio) makes these substitutions and evaluations a relatively
simple task.

An important feature, which we are currently working on,
is the ability to decode and display the rest of the segments
of the ISDB-T signal. As we explained before, most of the
operations (such as time deinterleaving) are performed per
segment. Those blocks are thus already capable of handling
the rest of the segments with minor modifications. The main
challenge with the full-segment receiver is the computing
power required to process a bit-stream with a significantly
higher rate than the one considered up to now. We are currently
evaluating the performance of each of the blocks in order to
optimize the most critical ones.

Please note however that for low-end PCs an off-line mode
is always possible (either for 1-seg or full-seg), where the
signal is recorded, then processed, and finally visualized. For
the cases where this is not acceptable, we are working on
implementing the first blocks of the receiver on the hardware’s
FPGA. For instance, the OFDM synchronization block is
computationally intensive, and off-loading it to the FPGA
would alleviate the PC’s CPU. Naturally, in this scenario we
would lose in simplicity and generality (the FPGA code would
be valid only for certain SDR hardwares), but a high-end PC
would not be necessary for online operation of the receiver.

One of the applications that we mentioned in the intro-

duction, in addition to evaluating other algorithms for the
different blocks, was the possibility of taking measurements
anywhere on the receiving chain. Indeed, there are several
measurement equipment specially designed for digital TV, but
their prices range roughly from 5.000 USD to 100.000 USD.
Just to cite an example which considers only software, Max-
Eye Technologies’ DVB-T/H signal analysis and monitoring
toolkit, a third-party add-on to National Instrument’s LabView,
which may be used together with the USRP, has a listing price
of 6.000 USD [23]. In addition to cost, these measurement
equipments present the negativity of being closed. This means
that in case of a doubt, the user counts only with the technical
support and/or the manual. Moreover, adding features (such
as another type of measurement, or a different measurement
technique) will imply even more cost (or will simply not be
possible).

Given the context above, we are also working on a free
and open GNU Radio out-of-tree module for digital mod-
ulation measurements, and its integration with gr-isdbt. The
first blocks are in beta stage, and may be downloaded from
https://github.com/git-artes/gr-mer.

VI. CONCLUSIONS

We have presented gr-isdbt, the first fully software-based,
free and open ISDB-T 1-segment receiver. We have discussed
the particularities of ISDB-T with respect to DVB-T, specially
those that represent the biggest challenge to the receiver (such
as the absence of Continual Pilots). Although, as discussed in
the previous section, there is plenty of room for improvement,
the performance of the current implementation is such that
the whole signal may be demodulated, transformed into the
original MPEG Transport Stream and visualized on real-time.

We consider this work to be a further step in the techno-
logical appropriation that the region is performing regarding
digital television. We believe that implementations based on
the free and open software paradigm are key to an effective
appropriation. Moreover, in our particular case, the Software
Defined Radio technology plays a fundamental role, assuring
generality (by means of frameworks such as GNU Radio) and
ease of distribution (with the exception of the general-purpose
hardware, the different applications are simply downloaded
from the Internet).
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