
Case-based Reasoning for Web Service Discovery
and Selection

Alan De Renzis∗1, Martin Garriga∗,
Andres Flores∗ and Alejandra Cechich

GIISCo Research Group, Faculty of Informatics
UNComa University, Neuquen, Argentina

1corresponding author: alanderenzis@fi.uncoma.edu.ar

Alejandro Zunino∗

ISISTAN Research Institute, UNICEN University
Tandil, Buenos Aires, Argentina

∗Also Consejo Nacional de Investigaciones Cientı́ficas
y Técnicas (CONICET)

Abstract—Web Service discovery and selection deal with the
retrieval of the most suitable Web Service, given a required
functionality. Addressing an effective solution remains difficult
when only functional descriptions of services are available. In this
paper, we propose a solution by applying Case-based Reasoning,
in which the resemblance between a pair of cases is quantified
through a similarity function. We show the feasibility of applying
Case-based Reasoning for Web Service discovery and selection,
by introducing a novel case representation, learning heuristics
and three different similarity functions. We also experimentally
validate our proposal with a dataset of 62 real-life Web Services,
achieving competitive values in terms of well-known Information
Retrieval metrics.

Index Terms—Web services, Service Selection, Service Discov-
ery, Case-based Reasoning, Service Oriented Application

I. INTRODUCTION

Service-Oriented Computing (SOC) has seen an ever in-
creasing adoption by providing support for building dis-
tributed, inter-organizational applications in heterogeneous en-
vironments [1]. Mostly, the software industry has adopted
SOC by using Web Service technologies. A Web Service is
a program with a well-defined interface that can be located,
published, and invoked by using standard Web protocols [2].

However, a broadly use of the SOC paradigm requires
efficient approaches to allow service discovery, selection,
integration and consumption from within applications [3]. Cur-
rently, developers are required to manually search for suitable
services to then provide the adequate “glue-code” for their
assembly into a service-oriented application [4]. Even with a
wieldy candidates list, a skillful developer must determine the
most appropriate service for the consumer application. This
implies a prohibitive effort into discovering services, analyzing
the suitability of retrieved candidates (i.e., service selection)
and identifying the set of adjustments for the final integration
of a selected candidate service.

In this work we make use of Case-based Reasoning
(CBR) [5]– from the Artificial Intelligence (AI) field – to
overcome the aforementioned problems in Web Service Dis-
covery and Selection. A Case-based Reasoner solves problems
by using or adapting solutions from old recurrent problems [6].
Sometimes called similarity searching systems, the most im-
portant characteristic of CBR systems is the effectiveness

of the similarity function used to quantify the degree of
resemblance between a pair of cases [7].

Our proposal models a Case-based Reasoner for Service
Selection, where the main contribution is threefold. We define
a case representation capturing information in Web Services
functional descriptions (typically WSDL). Moreover, we draw
a parallel among the key steps in CBR and the problem of Web
Service Discovery and Selection. Finally, we provide three im-
plementations for the similarity function, concerning structural
and semantic aspects from functional service descriptions.

The rest of the paper is organized as follows. Section II
details the service selection process. Section III presents
the application of CBR in the context of service selection.
Section IV details the alternatives for the similarity func-
tion. Section V presents the experimental validation of the
approach. Section VI discusses related work. Conclusions and
future work are presented afterwards.

II. SERVICE SELECTION

During development of a Service-oriented Application,
some of the comprising software pieces could be fulfilled
by the connection to Web Services. In this case, a list of
candidate Web Services could be obtained by making use
of any service discovery registry. Nevertheless, even with a
wieldy candidates’ list, a developer must be skillful enough
both to determine the most appropriate service and to shape
the adaptation artifacts for seamless integration of the selected
service. Therefore, a reliable and practical support is required
to make those decisions. For this, in previous work [8], [9]
we defined an approach for service selection.

The service selection method is based in an Interface Com-
patibility assessment of the candidate Web Services and the
(potentially partial) specification of the required functionality
– depicted in Figure 1. The procedure matches the required
interface IR and the interface (IS) provided by a candidate
service S (previously discovered). All available information
from the two interfaces is gathered to be assessed at semantic
and structural levels. The semantic assessment makes use of
the WordNet lexical database [10] for identifiers evaluation,
by means of terms separation, stop words removing, stemming
and terms similarity (synonymy and hypo/hyperonymy). The

Fig. 1: Interface Compatibility Scheme

structural evaluation considers data types equivalence and
subtyping.

The outcome of these evaluations is an Interface Matching
list where each operation from IR may have a correspondence
with one or more operations from IS. In addition, two appraisal
values are calculated: compatibility gap (concerning functional
aspects), and adaptability gap – which reflects the required
effort for integrability of the selected service.

III. CASE-BASED REASONING FOR SERVICE SELECTION

This work extends the Interface Compatibility Scheme by
means of a CBR methodology [5]. The main goal is to capture
the knowledge obtained from successive service selections as
a set of cases in the form of problem-solution pairs. Figure 2
shows the CBR approach (adapted from [5]).

Let be a knowledge base KB containing an initial set of
cases. Each case consists of a pair (problem, solution): the
problem is a description of certain functionality, and the
associated solution is the candidate service that fulfills such
functionality. A new case C is a problem part (required
functionality) that has to be paired with its corresponding
solution (candidate service). For this, the first step compares
C with all the problem parts in KB, according to a similarity
function. The outcome of this step is the most similar case to
C (retrieved case) – i.e., the pair (f unctionality, service) with
the most similar functionality w.r.t. C.

Then, the retrieved case is reused to generate the solved
case, by combining its solution part with the new case
C as the problem part. The solved case is then a pair
(required f unctionality, service). At this point, the solved case
is returned as the suggested solution, which can be revised by
expert users. If the suggested solution succeed in the revision,
it then becomes a confirmed solution (tested case). If it fails,
the case is discarded.

Finally, the last step decides whether or not to include the
confirmed solution (tested case) in KB. The learning case
decision can rely upon different criteria. In this approach, we
use a threshold value (th) over the similarity function: if the

similarity function returns a value higher than the threshold,
then the case is added to the KB.

In the following sections, we describe the application of
CBR concepts to Web Service discovery and selection.

A. Case Representation

First, it is essential to define an adequate case represen-
tation in the context of service selection. We have used an
object-oriented (OO) case representation, where the cases are
represented as object collections described by a set of attribute-
value pairs. Object-oriented representations are appropriate
for complex domains where different case structures may oc-
cur [11]. Figure 3 shows the OO case representation structure
for service selection. As stated earlier, the Case class is divided
into two parts – namely Problem and Solution.

The Problem part captures the required functionality to be
fulfilled by a candidate service. The required functionality is
composed of three simple attributes and a collection of a com-
plex attribute. The simple attributes are Service name (String),
Category (String), and Operations number (a positive integer
including zero). The complex attribute is Operations, which
represents the required operations. Each Operation contains
two attributes – Operation name and Return type (Simple or
Complex type) – and two collections of complex attributes –
Parameters and Exceptions. Parameter contains two attributes:
parameter name and parameter type (Simple or Complex
type). Exceptions contains a simple attribute: Type (string).

The Solution part is a simple string attribute Candidate
Service that represents the name of the service associated to
the problem description.

B. Case Retrieval

New cases are given as input to the Case-based Reasoner
(Figure 2) in the form of a required functionality – i.e., a
problem part (Pn) . To find a solution to a new case, the first
step calculates the similarity function (DIST) as a distance
between the new case and each case in the knowledge base

Fig. 2: Case-based Reasoning for Service Selection

Fig. 3: Case representation

KB – according to Formula 1, extracted from [7]. For each
attribute in the case representation, we have defined specific
similarity functions sim and weights wi (where the sum of all
weights wi is 1), – that are presented in the following sections.

DIST (CN ,CC) =
n

∑
1
(wi ∗ simi(CN

i ,C
C
i)) (1)

where CN is a new case to evaluate and CC is the candidate
case in KB.

Service name and Category: The Service name and
category evaluation consists in comparing the String values of
these attributes between the new case under analysis and the
problem part of each case in the KB. Similarity is calculated
using an algorithm for Identifiers evaluation which considers
semantics of terms in identifiers – discussed in detail in
Section IV-B. The given weight for service name and category
attributes is low (w = 0.1) as they do not directly express
functional aspects.

Operations number: The operations number evaluation
consists in comparing the numerical value for such attribute
between the new case under analysis and the problem part

of each case in the KB. Similarity is calculated according
to Formula 2. Candidate services (solutions) in the KB with
fewer operations than the required functionality (problem) are
considered as incompatible, being discarded as potential solu-
tions. The given weight for this attribute is higher (w = 0.3)
as it directly expresses a functional aspect (i.e., the number of
required operations).

Sim(#opN ,#opC) =

{
#opN <= #opC 1
otherwise 0

(2)

where #opN and #opC are the values of the operation number
attribute in the new case and a candidate case of the KB
respectively

a) Operations: The operations evaluation calculates sim-
ilarity between this complex attribute in the new case, and the
analogous attribute in the problem part of each case in KB.
Since the main criterion of our service selection approach is
functional similarity, this attribute presents the highest weight
(w = 0.6) and the most complex similarity function in this
Case-based Reasoner. Details of the similarity function for the
operations attribute are presented in Section IV.

C. Case Reuse and Revision

We use the first nearest neighbor (1-NN) strategy for case
adaptation, which implies that the most similar case is chosen
as the best solution [12]. Therefore, the solution part into the
new case will be the solution part (S) – i.e., the candidate
service – of the most similar retrieved case according to
Formula 1.

The solved case is then returned as the suggested solution
(Figure 2), and can be revised by expert users. Expert users are
people with high knowledge about the domain and the service-
oriented application under construction. Thus, an expert user
decides if the solution is suitable for the target application
or relevant for the underlying domain. Otherwise, the solved
case is rejected. Relevant cases can then be part of the KB’s
initial state. Experts feedback is not mandatory but necessary
to improve the reasoner performance and to determine the
threshold value according to the state (i.e., the number of
cases) of the KB at a given time.

D. Case Retraining

At this point, the Case-based Reasoner has compared the
new case against the problem part of all the cases in the KB
and (expectedly) has found a solution in terms of the attribute
similarity presented in the previous sections. Also, the solution
had been revised and acknowledged as valid by expert users
– i.e., it is a confirmed solution (tested case). The next step
consists in deciding if the tested case will be added to the KB.

On the one hand, too many retrained cases can generate
noise in the evaluation, decreasing the performance of the
reasoner in the long term. On the other hand, if no new cases
are added, no learning occurs, so the reasoner will not be
capable to deal with new cases. In order to prevent these
problems, we have defined a threshold value (th) over the
similarity function (DIST). The threshold value determines
whether or not a new case is retrained (learned case) in
the KB. If the similarity function returns a value higher than
the threshold, then the case is added to the KB as a new
meaningful case, otherwise it is discarded.

The goal is to prevent the uncontrollable growth of the
KB while improving the performance of the reasoner. The
threshold value is a configurable constant that depends on the
reasoner implementation and the initial number of cases. If the
initial number of available cases is low (e.g., with regard to
the total number of services in a given domain), the threshold
value will also be settled low, allowing the reasoner to add
new cases and to enrich the KB. If the number of available
cases grows in a certain moment, the threshold value can be
increased to add only new cases with a significant similarity.

IV. OPERATIONS SIMILARITY

As we stated earlier, operation similarity is the key attribute
for assessing new cases against the potential candidate ser-
vices, included as cases in the KB. The operations similarity
evaluation accounts semantic and structural aspects extracted
from operation definitions. Structural aspects involve data
types equivalence (subtyping), while semantic aspects involve

concepts from terms and identifiers. We have defined three
implementations for operations similarity that mainly differ in
their semantic basis. This resulted in three different similarity
functions for operations evaluation. In the following sections
we describe the similarity evaluation for each element in
operations: identifiers, operation name (evaluated as a special
case of identifiers), parameters, return type, and exceptions.

A. Case Study

A simple case study has been outlined to illustrate key
steps of our proposal. We considered the Car Rental domain,
where the required features are portrayed according to the
OO case representation (Figure 3). Thus Figure 4a shows
a new case (newCase), which contains the description of a
proposed service named RentaCar. Such interface defines three
operations and three complex data types. Note that the solution
part of the newCase is not instantiated since the case has not
been evaluated.

The functionality of the required interface will be fulfilled
by engaging a third-party Web Service. The case in the
KB candidateCase contains the representation of the service
CarRentalBrokerService. The candidateCase defines four op-
erations and three complex data types – as shown in Figure 4b.

Both cases were built by adapting real Web Services1,2 from
the Car Rental domain to illustrate our proposal.

B. Identifiers Evaluation

To evaluate semantic aspects the similarity functions com-
pare terms and identifiers from operations. We implemented
three alternatives for these functions. The first two make
use of WordNet [10]. WordNet is a domain-independant
lexical database of the english language that is structured as
a lexical tree. WordNet groups terms in synsets (synonym
sets) that represent the same lexical concept. Several rela-
tionships connect different synsets, such as hypo/hyperonyms,
holonyms/meronyms and antonyms. All hierarchies ultimately
go up the root node {entity}. The WordNet structure can be ac-
cessed through different Java libraries, each one implementing
different metrics and features [13]. Particularly, in this work
we used JWI3 (in the first similarity function) and JWNL4

(in the second similarity function). These libraries are among
the most complete and easy to use for WordNet lexical tree
manipulation [13].

The third alternative for the similarity function is based upon
DISCO [14], a pre-computed database of collocations and
distributionally similar words. DISCO’s Java library5 allows
to retrieving the semantic similarity between arbitrary words.
The similarities are based on the statistical analysis of very
large text collections (e.g., Wikipedia), through co-occurrence
functions. For each word, DISCO stores the first and second
order vectors of related words using a Lucene index [15]. To

1http://goo.gl/MC7uXh
2http://goo.gl/LL0k0w
3http://projects.csail.mit.edu/jwi/
4http://web.stanford.edu/class/cs276a/projects/docs/jwnl/overview
5http://www.linguatools.de/disco/disco-api-1.4/

(a) New case instantiation

(b) Candidate case instantiation

Fig. 4: Object cases representation for the Car Rental example

determine the similarity between two words, DISCO retrieves
the corresponding word vectors from the index and computes
the similarity based in co-occurrences.

Following we describe the similarity functions implemented
using JWI, JWNL and DISCO. To determine the similarity
between two identifiers, these implementations share two pre-
liminary common steps. Thus, two identifiers are initially pre-
processed through term separation and stop words removal [8]:

Term Separation: Identifiers are normally restricted to a
sequence of one or more letters in ASCII code, numeric char-
acters and underscores (“ ”) or hyphens (“-”). The algorithm
supports the rules in Table I – i.e., the usual programming nam-
ing conventions – plus a semantic level to consider identifiers
that do not follow those conventions. The Term Separation step
analyzes the identifiers, recognizing potential terms (uppercase

sequences and lowercase sequences). Then, WordNet is used
to analyze all the potential terms and determines the most
adequate term separation. The term separation step is crucial
to consider the correct terms as input to the semantic analysis.

Example. Let be the identifier GDSCode from the Car Rental
domain. This identifier does not strictly follow the Java Beans
notation. An initial analysis identifies an uppercase sequence
(GDSC), and a lowercase sequence (ode). Then, the sequence C

+ ode = Code is given as input to WordNet. As it is an existing
word in the WordNet dictionary, Code is considered as a term
and GDS as an acronym (an abbreviation of Global Distribution
System) that is also considered as a term.

Stop Words Removal: Stop words are meaningless words
that are filtered out prior to, or after, processing natural lan-
guage data (text) [16]. We defined a stop words list containing

TABLE I: Rules for Decomposing Identifiers

Notation Rule Source Result
Java Beans Splits when changing text case getZipCode get Zip Code
Special symbols Splits when either “ ” or “-” occurs get Quote get Quote

Fig. 5: Length between “compact” and “truck” in the WordNet
hierarchy

articles, pronouns, prepositions, words from other stop words
lists and each letter of the alphabet. The terms lists obtained
from the previous step are analyzed to remove any occurrence
of a word belonging to the stop words list.

Example. Let consider the identifier AgencyHandledBy which
corresponds to a field in the Data Type AgencyData of the Car
Rental example. According to the Java Beans notation, the
identifier is decomposed in three terms: [Agency, Handled,

By]. As ’By’ belongs to the stop words list, it is removed
from the terms list.

1) JWI-based Identifiers Evaluation: The JWI implemen-
tation comprises three main additional steps: stemming, terms
lists semantic comparison and identifiers compatibility calcu-
lation.

Stemming is the process for reducing words to their stem,
base or root form. Due to common problems of standard
syntactical stemmers [17], we adapted the semantic stemmer
provided by WordNet. The Stemming step receives as input a
terms list. For each term in the list is verified that it belongs
to the WordNet dictionary. If it does so, the corresponding
stems are added to the result list. Otherwise, the original term
is added to the result list, considered as an abbreviation or
acronym.

After generating both lists of stems, their compatibility is
calculated considering semantic information. This information
is expressed as a vector of integers v = {t,e,s,h1,h2} includ-
ing: the total terms between both lists (t), the identical (exact)
terms (e), synonyms (s), hyperonyms (h1) and hyponyms
(h2). For example, let be the identifiers GetReservation and
GetCurrentBooking extracted from the cases of the Car Rental
example in Section IV-A. According to the term lists semantic
comparison, these identifiers present:
• Four distinct terms: (Get, Reservation, Current, Booking)
• One exact (identical) term: Get
• One synonym: (Reservation, Booking)

• No hypo/hyperonyms
Using these values in the vector v as input, the Identifiers
Compatibility Value is calculated according to Formula 3.

ICValue =
e+ s+0.5∗ (h1 +h2)

t− s
(3)

Example. Let be the identifiers GetReservation and
GetCurrentBooking extracted from the interfaces of the Car
Rental example, by replacing the values in Formula 3 we
obtain:

ICValue =
1+1+0.5∗ (0+0)

4−1
=

2
3
= 0.66

Which indicates a compatibility value of 0.66 between the
identifiers GetReservation and GetCurrentBooking – consid-
ering that the maximum value for ICValue is 1, the obtained
value indicates a moderate to strong compatibility between the
identifiers.

2) JWNL-based Identifiers Evaluation: The JWNL imple-
mentation calculates the compatibility value according to two
main additional steps: generation of the normalized depth
matrix and term matching maximization.

First, the Normalized Depth matrix (ND) is generated. The
depth is defined as the shortest path between two terms in
the WordNet hierarchy. These values are normalized by the
maximum depth of the WordNet hierarchy (16). Formally, the
normalized depth is calculated according to Formula 4.

NormalizedDepth(ti, t j) =
2D− length(ti, t j)

2D
(4)

where length(ti, t j) = shortest path between ti, tj in the WordNet
hierarchy, D is the maximum tree depth (16)

Example. Figure 5 shows an excerpt of the WordNet hier-
archy, showing different types of vehicles. It shows that the
length between the concepts compact and truck is 3, and the
length between compact and motor vehicle is 2. These values
indicate that compact and motor vehicle are more similar than
compact and truck – according to JWNL.

Accounting this notion of length, lets consider the two iden-
tifiers GetReservation and GetCurrentBooking (analyzed in
Section IV-B1). The ND matrix will be a 2x3 matrix contain-
ing the length between each pair of terms in the identifiers, as
shown in Table II. Notice that ND(Reservation,Booking) = 1
since these terms are synonyms in the WordNet hierarchy
(their path length is zero).

TABLE II: Normalized Depth matrix for the identifiers
GetReservation and GetCurrentBooking

Get Current Booking

Get 1.00 0.56 0.72

Reservation 0.72 0.72 1.00

Higher is better. Maximum and minimum values are 1 and 0 respectively.

After calculating the ND matrix, the best term matching
(among all possible pair-wise combinations) must be selected
– i.e., the combination of terms from both terms lists that
maximizes their compatibility. For each possible pair-wise
term assignment (ti, t j) between both lists, the similarity value
is obtained from the corresponding matrix cell NDi j. The
value of each possible term matching is the sum of all pair-
wise assignments that compose it (assignSum). The matching
with the highest value is obtained through the Hungarian
method [18], as an instance of the allocation problem.

Finally, the identifiers compatibility value (ICValue) using
JWNL is calculated according to Formula 5, which weights
the sum of the pair-wise assignments of terms according to the
maximum number of terms in the identifiers under analysis.

ICValue =
assignSum
max(n,m)

(5)

where n and m are the number of terms in both terms lists.
Example. Considering the ND matrix shown in Table II, the

term matching that maximizes the compatibility between the
identifiers consists of the following pair-wise assignments:
• [Get,Get], stored in the cell ND1,1 = 1.00
• [Reservation, Booking], stored in the cell ND2,3 = 1.00

Then, replacing the corresponding values in Formula 5, the
compatibility value between identifiers GetReservation and
GetCurrentBooking is calculated as follows:

ICValue =
1+1

max(2,3)
=

2
3
= 0.66

3) DISCO-based Identifiers Evaluation: The DISCO-based
implementation calculates the compatibility value according to
two main steps: generation of the co-occurrences matrix and
term matching maximization.

First, the Co-occurrences matrix (Co) is generated. This
matrix contains the similarity values between each term from
both terms lists. These values are the result of applying
the co-occurrences similarity notion of DISCO, explained
earlier. After calculating the Co matrix, the best term matching
(among all possible pair-wise combinations) must be selected.
Similarly to the JWNL-based implementation, this step uses
the Co matrix as input for the Hungarian algorithm. The
matching with the highest value will be the most compati-
ble. Such matching is also obtained through the Hungarian
method – introduced in Section IV-B2. Finally, the identifiers
compatibility value using DISCO is calculated according to
Formula 5.

Example. Lets consider the pair of identifiers of the previous
section – namely GetReservation and GetCurrentBooking.

The Co matrix will be a 2x3 matrix containing the co-
occurrence values between each pair of terms in the identifiers,
as shown in Table III. Notice that, when using DISCO rather
than WordNet, synonyms do not present a co-occurrence value
of 1 – as can be seen for the pair (Reservation, Booking).

TABLE III: Co-occurrences matrix for the identifiers
GetReservation and GetCurrentBooking

Get Current Booking

Get 1.00 0.006 0.02

Reservation 0.01 0.01 0.1

Higher is better. Maximum and minimum values are 1 and 0 respectively.

Considering the Co matrix shown in Table III, the term match-
ing that maximizes the compatibility between the identifiers
consists of the following pair-wise assignments:
• [Get,Get], stored in the cell Co1,1 = 1.00
• [Reservation, Booking], stored in the cell Co2,3 = 0.1

Then, replacing the corresponding values in Formula 5, the
compatibility value between identifiers GetReservation and
GetCurrentBooking is calculated as follows:

ICValue =
1+0.1

max(2,3)
=

1.1
3

= 0.36

C. Return type

Data Type Equivalence: Conditions for data type equiv-
alence involves the subsumes relationship or subtyping, which
implies a direct subtyping in case of built-in types in the
Java language [19], as shown in Table IV. It is expected
that types on operations from a new case have at least as
much precision as types on operations from a candidate service
(case in the KB). For example, if opN ∈ newCase includes an
int type, a corresponding operation opC ∈ candidateService
should not have a smaller type (among numerical types) such
as short or byte. However, the String type is a special case,
which is considered as a wildcard type since it is generally
used in practice by programmers to allocate different kinds
of data [20]. Thus, we consider String as a supertype of any
other built-in type.

TABLE IV: Subtype Equivalence

opN type opC type
char string
byte short, int, long, float, double, string
short int, long, float, double, string
int long, float, double, string
long float, double, string
float double, string
double string

Complex Data Types: Complex data types imply a special
treatment in which the comprising fields must be equivalent
one-to-one with fields from a counterpart complex type. This
means, each field of a complex type from an operation opN ∈
newCase must match a field from the complex type in opC ∈
candidateService – though extra fields from newCase may be
initially left out of any correspondence.

The return type similarity value is calculated according to
the following cases:
• Ret = 3: Equal Return Type.
• Ret = 2: Equivalent Return Type (Subtyping, String or

Complex types).
• Ret = 1: Non-equivalent complex types or precision loss.
• Ret = 0: Not compatible .

Example. Figure 6 shows the field-to-field equivalence (con-
sidering only data types) for two complex types of the Car
Rental example, which contains information about booking
cancellation rates. The three fields of the CancelInformation

type have a one-to-one correspondence with three fields of the
CancellationCoverRate. The dotted arrows indicate a likely
correspondence between the String types. For this example
the return type similarity value is Ret = 2.

D. Parameters evaluation
The algorithm for Parameters Evaluation consists of calcu-

lating three matrices: Type (T), Name (N) and Compatibility
(Comp). For the three matrices, the cell Mi j represents the
compatibility value between the i-th parameter of opN and
the j-th parameter of opC – where opN is an operation of the
required functionality (new case) and opC is an operation of
a candidate service (case in the KB).

In the T matrix, the notions of structural data type equiva-
lence and subtyping are used to assess parameter types. The
goal of the T matrix is to store the relationship between
all pairs of parameter types from both operations. A cell Ti j
contains the compatibility value between the i-th parameter’s
type of opN and the j-th parameter’s type of opC, according
to Formula 6.

Type(Pi) = Type(Pj) Ti j = 2
Type(Pi)<: Type(Pj) Ti j = 1.5
otherwise Ti j = 1

(6)

where <: represents the sutyping relationship

The N matrix contains the compatibility values between
the name of each parameter from opN and the name of
each parameter from opC. The underlying rationale is similar
to the T matrix. The cell Ni j contains the compatibility
value between the i-th parameter’s name of opN and the j-th
parameter’s name of opC. This value is the result of applying
the Identifiers Evaluation Algorithm presented in Section IV-B.
Therefore, these values depend on the chosen similarity func-
tion implementation – from the three alternatives.

Then, the Comp matrix is generated from the T and N
matrices. The goal of the Comp matrix is to store the com-

patibility value between all parameter pairs from operations
opN and opC, considering structural and semantic aspects –
collected in the T matrix and the N matrix respectively. Each
cell Compi j stores the product between Ti j and Ni j. Thus:
Compi j = Ti j ∗Ni j.

After calculating the Comp matrix, the best parameter
matching (among all possible pair-wise combinations) must be
selected – i.e., the combination of parameters from opN and
opC that maximizes their compatibility. This step applies the
Hungarian algorithm to calculate the best pair-wise parameters
assignments – similarly to the term matching maximization in
JWNL-based Identifiers Evaluation (Section IV-B),.

E. Exceptions

Structural conditions for exceptions are evaluated as fol-
lows. First, any operation opN may define default exceptions
– i.e., using the Exception type – or ad-hoc exceptions.
Likewise, an operation opC from a candidate case may define a
fault (the WSDL name for non-standard outputs of operations)
as a message including an specific attribute. The exceptions
similarity value is calculated according to the following cases:
• Exc= 1: opN and opC have equal amount, type and order

for exception.
• Exc = 2: opN and opC have equal amount and type for

exception into the list.
• Exc = 3: if nonempty opN exception list then nonempty

opC exceptions list.
• Exc = 0: opN and opC exceptions are not compatible.

In fact, in the context of Web Services, faults definitions have
not become a common practice [21]. However, the Case-based
Reasoner considers this simple schema to analyze exceptions.

Example. Lets consider the following operations for obtain-
ing rates for Car Rental, according to different vehicles and
conditions (from the cases presented in Section IV-A):
• getCarFee(requiredCarSupplements: CarSupplements):

Fee
throws unavailableSupplementsException;

• getRate(currencyCode: String, vehicleTypeId: long,
AutomaticGearPreference:
boolean): Rate throws vehicleNotFoundException,
rateNotFoundException;

If we consider getCarFee as opN ∈ newCase and getRate

as opC ∈ candidateCase respectively, the exceptions analysis
shows that the required operation throws an exception that
may have two likely exceptions (form different types) in the
candidate service’s operation – as defined in case (2).

F. Similarity value

The similarity value between two cases (CN , CC) is calcu-
lated according to Formula 7.

sim(CN ,CC) =
∑

N
i=1(Max(simOp(opN

i ,C
C))

N
(7)

where N is the number of operations in CN , and simOp is the
best equivalence value simOpValue(opN

i ,opC
j) for all opC

j in CC

Fig. 6: Equivalence of Complex Data types for the CarRental example

The value for operation similarity (simOpValue) between an
operation opN and a potentially compatible operation opC is
calculated according to Formula 8.

simOpValue(opN
i ,opC

j) = Ret +Exc+Name+Par (8)

a) Example.: Lets consider the full cases of the Car
Rental case study, presented in Section IV-A. Table V shows,
for each required operation opN ∈ newCase, the operation
opC ∈ candidateCase with higher compatibility (according to
their adapOpValue) in the interface of the candidate Web
Service. Calculations were done using the WordNet semantic
basis accessed through the JWI library.

As the higher (better) sim value is 8, the obtained sim value
(5.4) can be considered as moderate to high.

After obtaining the similarity value for operations, we
can calculate the distance between the cases presented in 4
according to the Formula 1. Table VI shows a summary of
the required calculations to obtain the distance value.

Let be new case CN =CarRental and candidate case CC =
CarRentalBrokerService the distance between the cases is:

DIST (CN ,CC) = 0,1∗ sN +0,1∗ cat +0,3∗#op+0,6∗ops

DIST (CN ,CC) = 0,1∗0,5+0,1∗1+0,3∗1+0,6∗5,4

DIST (CN ,CC) = 3,69

V. EXPERIMENTAL EVALUATION

This section describes the experimental evaluation of the
CBR for service selection presented in the previous sec-
tions. The goal of the experiments is to measure the overall
performance of the three alternative implementations of the
CBR for service selection in comparative terms. We adopted
an empirical, automatized and widely used methodology [9],
[22]–[24]. Our hypothesis is that CBR for service selection
could increase visibility of the most relevant services for
certain required functionality.

A. Experiment configuration
The considered data-set consisted in 62 services extracted

from the data-set of [25]. We have generated (through a tool
developed in our group) one case for each service to settle the
initial KB, according to the Object-oriented case representation
presented in Section III-A.

First, we extracted operation signatures from the 62 rel-
evant services. Each new case consisted of three operations
representing required functionality. Then, we applied interface
mutation techniques [26] to generate 506 new cases (only
problem part). We applied three mutation operators6 to each
operation signature:
• Encapsulation – where a random number of parameters

are encapsulated as fields of a new complex data type.
• Flatten – where a random number of complex parameters

are flattened generating as many parameters as fields in
the complex type.

• Upcasting – where the return type and/or a random
number of parameters are upcasted either to a direct
supertype or to the wildcard String type.

B. Case-based Reasoning Execution

To execute the CBR for service selection, we have defined
one scenario considering three implementations according to
the similarity functions presented in Section IV, and the
506 new cases generated by mutating operation signatures.
Considering traditional techniques of service retrieval and
selection, we also populated the EasySOC service registry [27]
with the relevant services, and then queried such registry with
the operation signatures. EasySOC leverages Vector Space
Model (VSM) and Web Service query-by-example (WSQBE)
to represent Web Service descriptions and queries.

The three versions of the CBR for service selection were
executed to rank the retrieved cases. Finally, the results of
each new case are measured in terms of two well-known
Information Retrieval metrics: recall and precision-at-n.

C. Results

Considering the results list as the first 10 retrieved cases for
each query, we compared the results according to precision-
at-n and recall.

Precision-at-n: Indicates in which position are retrieved
the relevant services, at different cut-off points. For example,
if the top five documents are all relevant to a query and the
next five are all non-relevant, precision-at-5 is 100%, while
precision-at-10 is 50%. In this case, precision-at-n has been
calculated for each query with n in [1–10].

6https://code.google.com/p/querymutator/

TABLE V: Operations matching for the Car Rental cases

RentaCar (newCase) CarRentalBrokerService (candidateCase) simOpValue*

GETRESERVATION GETCURRENTBOOKING 7.3
GETCARFEE GETRATE 2.4

CANCELRESERVATION CANCELBOOKING 6.4

sim(newCase,candidateCase) 5.4
* Higher is better

TABLE VI: Summary of the required calculations

Attribute Weight* Evaluation Result**

service name (Formula 3): sN 0.1 ICValue(CarRental,CarRentalBrokerService) 0.5
category (Formula 3): cat 0.1 ICValue(Business,Business) 1

operations number (Formula 2):#op 0.3 sim(3,4) 1
operations (Formula 7): ops 0.6 sim(CarRental,CarRentalBrokerService) 5.4

* The sum of all weights is 1. The higher the weight the more important the attribute.

** Higher is better.

(a) Precision-at-n

(b) Recall

Fig. 7: Results for the CBR implementations and EasySOC

Recall: Formally, Recall is defined as:

Recall =
Relevant

R
Where Relevant is the number of relevant services includes in the

results list and R is the number of relevant services for a given
query.

In particular, for this experiment the numerator of the Recall
formula could be 0 or 1 – when the relevant service is/is not
included within the results respectively – and the denominator
(Retrieved) is always 10.

Figure 7a depicts the cumulative average precision-at-n
(with n=[1,10]) for the three implementations of the CBR
approach (JWI-, JWNL- and DISCO-based) and the EasySOC
registry. The CBR for service selection obtained precision
values over 90% for the first position of the results (with n
= 1) with any implementation. Also, the difference among
the precision-at-n of the three CBR implementations was
not significant. The CBR for service selection outperformed
EasySOC registry between 20% and 40% for the first positions
of the results lists (with n=[1,4]).

Figure 7b shows Recall results for the three implementations
of the CBR-based service selection and the EasySOC registry.
The results show that the CBR for service selection presents
high recall values – over 98% – independently of the underly-
ing implementation. This means that the relevant case for the
given problem is almost always retrieved. The CBR for service
selection outperformed recall results for EasySOC by about
a 10%, although the EasySOC presented highly competitive
values (over 85%) for recall as well.

D. Discussion

The results of the experiments have shown that our CBR
for service selection approach achieves a high precision and
recall with the three alternative implementations of the simi-
larity function. Comparison with a service discovery registry
(EasySOC) presented encouraging results as well. This con-
firms our hypothesis, as CBR increased visibility of relevant
services during service selection. This is significant since users

tend to select higher ranked search results, regardless to their
actual relevance [28]. The overall performance of the ap-
proach with multi-operation queries suggest the suitability for
matching complex required functionality with many candidate
services. In this direction, the reasoner could be extended
to the Web Service Composition (WSC) problem, by means
of case adaptation using the K-nearest neighbors (K-NN)
strategy [12]. Finally, the threshold value over the similarity
function can be used to fine-tune the reasoner, according to
the size of the initial KB and the domain. In this experiment,
an average of 57% of the solved cases was added to the KB
as new cases – i.e., 288 of the 506 queries.

As limitations, we can mention that the results can be
specific for this experiment, and cannot be merely generalized
to other experimental configurations. The dataset was rela-
tively small (62 services), and the threshold values were fine-
tunned by trial and error in the experimental scenario. In real
scenarios, it would be wise to account the expert feedback
from the Case Revision step to adjust the threshold value.
Finally, the initial set of cases and solutions in a real scenario
has to be manually built, which can be time consuming and
also need expert feedback.

VI. RELATED WORK

A. Case-based Reasoning for Web Services

AI has contributed significantly to the Web Services field,
either in the form of planning [29]–[31], abstraction and
refinement techniques [32], or case based reasoning [33], [34].

The work in [34] presents an approach for WSC using CBR.
This approach combines CBR with semantic specifications of
services in the OWL-S language [35] to firstly reduce the
search space of Web Services (i.e., improve service discovery),
and then build an abstract composite process. Authors assume
that Web Service providers are in charge of semantically
annotating functional service descriptions according to the
OWL-S ontology. However, this hardly occurs in practice, and
most domains currently lack a descriptive ontology [22]. Our
work exploits the most possible information in the (always
available) service functional descriptions, to build the case
representation.

The work in [33] also applies CBR for WSC. Similarly
to our work, CBR is applied for service discovery, as a
crucial step in the composition process. This approach requires
knowing a priori a set of relationships between the services
that compose the KB – e.g., dependence, substitutability and
independency. However, this approach is strongly dependant of
the Universal Description, Discovery and Integraton (UDDI)
registry, that lacks a broad adoption in the industry [36]. Our
approach is not tied to any particular discovery registry.

B. Structural-semantic service selection

Web Service similarity is addressed in [37] as a key solution
to find relevant substitutes for failing Web Services. The
approach calculates lexical and semantic similarity between
identifiers comprising service names, operations, input/output

messages, parameters, and documentation. To compare mes-
sage structures and complex XML schema types, authors make
use of schema matching. However, a straightforward compar-
ison of complex types can be performed without dealing with
the complexity of an XML schema [9].

The Woogle search engine for Web Services is presented
in [38]. Based on similarity search, Woogle returns similar
Web Services for a given query based on operation parame-
ters as well as operations and services descriptions. Authors
introduced a clustering algorithm for grouping descriptions in
a reduced set of terms. After that, similarity between terms is
measured using a classical IR metric such as TF/IDF. The
provided solution is limited to evaluating similarity using
semantic relations between clustered terms.

The work in [39] extends UDDI with UDDI Registry
By Example (URBE), a Web Service retrieval algorithm for
substitution purpose. The approach considers the relationships
between the main elements composing a service specification
(portType, operation, message, and part) and, if available,
semantic annotations. The weak point of the approach is, as
we stated earlier, that providers do not annotate their services
often in practice, even when introducing annotations provides
a more accurate description of the service.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented the application of CBR to the problem
of service discovery and selection. This approach leverages
the semantic and structural information gathered from always-
available functional descriptions of services. Also, the ap-
proach combines notions of CBR with the use of WordNet
and DISCO as lightweight semantic basis. This results in a
Case-based Reasoner capable of increasing the visibility of
relevant services to fulfill certain required functionality – the
relevant service was returned as suggested solution in about a
90% of the cases.

The proposed scheme was tested for three different similar-
ity functions, which shown similar performance by considering
the whole semantic and structural information available from
services. However, it is mandatory to define and fine-tune
adequately the threshold values to circunscribe the growing of
the knowledge base. This can be done at runtime, accounting
feedback from domain-experts and service-experts. As future
work, we plan to extend our reasoner to the WSC field, by
combining different cases as a solution for complex required
functionality [33].

ACKNOWLEDGMENT

This work is supported by projects: PICT 2012-0045 and
UNCo–Reuse(04-F001).

REFERENCES

[1] J. Erickson and K. Siau, “Web Service, Service-Oriented Computing,
and Service-Oriented Architecture: Separating hype from reality,” Jour-
nal of BD Management, vol. 19, no. 3, pp. 42–54, 2008.

[2] M. Bichler and K. Lin, “Service-Oriented Computing,” Computer,
vol. 39, no. 3, pp. 99–101, 2006.

[3] R. McCool, “Rethinking the Semantic Web,” IEEE Internet Computing,
vol. 9, no. 6, pp. 86–87, 2005.

[4] M. Crasso, A. Zunino, and M. Campo, “A survey of approaches to web
service discovery in service-oriented architectures,” Journal of Database
Management (JDM), vol. 22, no. 1, pp. 102–132, 2011.

[5] A. Aamodt and E. Plaza, “Case-based reasoning; foundational issues,
methodological variations, and system approaches,” AI COMMUNICA-
TIONS, vol. 7, no. 1, pp. 39–59, 1994.

[6] C. K. Riesbeck and R. C. Schank, Inside case-based reasoning. Psy-
chology Press, 2013.

[7] T. W. Liao, Z. Zhang, and C. R. Mount, “Similarity measures for retrieval
in case-based reasoning systems,” Applied Artificial Intelligence, vol. 12,
no. 4, pp. 267–288, 1998.

[8] A. De Renzis, M. Garriga, A. Flores, A. Cechich, and A. Zunino,
“Semantic-structural assessment scheme for integrability in service-
oriented applications,” in Computing Conference (CLEI), 2014 XL Latin
American, pp. 1–11, Sept 2014.

[9] M. Garriga, A. Flores, C. Mateos, A. Zunino, and A. Cechich, “Service
selection based on a practical interface assessment scheme,” Interna-
tional Journal of Web and Grid Services, vol. 9, pp. 369–393, October
2013.

[10] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller, “Introduc-
tion to Wordnet: An On-line Lexical Database,” International Journal
of Lexicography, vol. 3, no. 4, pp. 235–244, 1990.

[11] F. Coenen, “Data mining: past, present and future,” The Knowledge
Engineering Review, vol. 26, no. 01, pp. 25–29, 2011.

[12] I. Watson, “Case-based reasoning is a methodology not a technology,”
Knowledge-based systems, vol. 12, no. 5, pp. 303–308, 1999.

[13] M. A. Finlayson, “Java libraries for accessing the princeton wordnet:
Comparison and evaluation,” in Proceedings of the 7th Global Wordnet
Conference, Tartu, Estonia, 2014.

[14] P. Kolb, “Experiments on the difference between semantic similarity and
relatedness,” Proceedings of the 17th Nordic Conference on Computa-
tional Linguistics - NODALIDA’09, May 2009.

[15] E. Hatcher, O. Gospodnetic, and M. McCandless, Lucene in Action.
Manning Publications Greenwich, CT, 2004.

[16] M. Armentano, D. Godoy, M. Campo, and A. Amandi, “Nlp-based
faceted search: Experience in the development of a science and technol-
ogy search engine,” Expert Syst. Appl., vol. 41, no. 6, pp. 2886–2896,
2014.

[17] P. Willett, “The porter stemming algorithm: then and now,” Program:
electronic library and information systems, vol. 40, no. 3, pp. 219–223,
2006.

[18] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistic Quarterly, vol. 2, pp. 83–97, 1955.

[19] J. Gosling, B. Joy, G. Steele, and G. Bracha, JavaT M Language Spec-
ification. Sun Microsystems, Inc, US: Addison-Wesley, 3rd. ed., 2005.
http://java.sun.com/docs/books/ jls/third edition/html/j3TOC.html.

[20] J. Pasley, “Avoid XML Schema Wildcards For Web Service Interfaces,”
IEEE Internet Computing, vol. 10, no. 3, pp. 72–79, 2006.

[21] M. Crasso, J. M. Rodriguez, A. Zunino, and M. Campo, “Revising
WSDL Documents: Why and How,” IEEE Internet Computing, vol. 14,
no. 5, pp. 48–56, 2010.

[22] D. Bouchiha, M. Malki, A. Alghamdi, and K. Alnafjan, “Semantic
web service engineering: Annotation based approach,” Computing and
Informatics, vol. 31, no. 6, pp. 1575–1595, 2012.

[23] E. Stroulia and Y. Wang, “Structural and Semantic Matching for As-

sessing Web-Services Similarity,” International Journal of Cooperative
Information Systems, vol. 14, pp. 407–437, 2005.

[24] C. Mateos, M. Crasso, A. Zunino, and J. L. Ordiales, “Detecting WSDL
bad practices in code–first Web Services,” International Journal of Web
and Grid Services, vol. 7, no. 4, pp. 357–387, 2011.

[25] A. Heß, E. Johnston, and N. Kushmerick, “Assam: A tool for semi-
automatically annotating semantic web services,” in The Semantic Web–
ISWC 2004, pp. 320–334, Springer, 2004.

[26] S. Gosh and A. P. Mathur, “Interface Mutation,” Software Test-
ing, Verification and Reliability, vol. 11, pp. 227–247, 2001.
http://www.interscience.wiley.com.

[27] M. Crasso, C. Mateos, A. Zunino, and M. Campo, “Easysoc: Making
web service outsourcing easier,” Information Sciences, vol. 259, pp. 452
– 473, 2014.

[28] E. Agichtein, E. Brill, S. Dumais, and R. Ragno, “Learning User
Interaction Models for Predicting Web Search Result Preferences,” in
29th Annual ACM SIGIR International Conference on Research and
Development in Information Retrieval, pp. 3–10, ACM Press, 2006.

[29] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso, “Automated com-
position of web services by planning at the knowledge level,” in IJCAI,
pp. 1252–1259, 2005.

[30] P. Bertoli, M. Pistore, and P. Traverso, “Automated composition of web
services via planning in asynchronous domains,” Artificial Intelligence,
vol. 174, no. 3, pp. 316–361, 2010.

[31] J. Rao and X. Su, “A survey of automated web service composition
methods,” in International Workshop on Semantic Web Services and
Web Process Composition (SWSWPC), pp. 43–54, 2004.

[32] H. Kil, W. Nam, and D. Lee, “Efficient abstraction and refinement
for behavioral description based web service composition.,” in IJCAI,
pp. 1740–1745, 2009.

[33] B. Limthanmaphon and Y. Zhang, “Web service composition with case-
based reasoning,” in Proceedings of the 14th Australasian database
conference-Volume 17, pp. 201–208, Australian Computer Society, Inc.,
2003.

[34] S. Lajmi, C. Ghedira, and K. Ghedira, “Cbr method for web service
composition,” in Advanced Internet Based Systems and Applications,
pp. 314–326, Springer, 2009.

[35] D. Martin, M. Burstein, D. McDermott, S. McIlraith, M. Paolucci,
K. Sycara, D. McGuiness, E. Sirin, and N. Srinivasan, “Bringing
semantics to web services with owl-s,” World Wide Web, vol. 10,
pp. 243–277, 2007.

[36] Y. Dai, Y. Feng, Y. Zhaooo, and Y. Huang, “A method of uddi service
subscription implementation,” in Software Engineering and Service
Science (ICSESS), 2014 5th IEEE International Conference on, pp. 661–
666, IEEE, 2014.

[37] O. Tibermacine, C. Tibermacine, and F. Cherif, “Wssim: a tool for
the measurement of web service interface similarity,” in Proceedings
of the french-speaking Conference on Software Architectures (CAL’13),
(Toulouse, France), May 2013.

[38] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang, “Similarity
search for web services,” in Proceedings of the International Conference
on Very Large Data Bases VLDB, pp. 372–383, VLDB Endowment,
2004.

[39] P. Plebani and B. Pernici, “Urbe: Web service retrieval based on similar-
ity evaluation,” IEEE Transactions on Knowledge and Data Engineering,
vol. 21, no. 11, pp. 1629–1642, 2009.

