
2015 XLI Latin American Computing Conference (CLEI)

Improved Batch Elimination: A Fast Algorithm to
Identify and Remove Harmful Compiler

Optimizations

Ewerton Daniel de Lima
Departament of Informatic

State University of Maringá

Maringá, Paraná, Brazil

Email: ewertondanieldelima@gmail.com

Anderson Faustino da Silva
Departament of Informatic

State University of Maringá

Maringá, Paraná, Brazil

Email: anderson@din.uem.br

Abstract—Modern compilers provide several optimizations
that can be applied to the source code, in order to increase its
performance. Due to the complex relationship between various
optimizations, discovering harmful compiler optimizations is a
problem in the context of compilers. Strategies based on iterative
compilation try to solve this problem evaluating the performance
of the compiled program using different sets. In this context,
Combined Elimination is an efficient iterative compilation strat-
egy. The purpose of Combined Elimination is to identify the
harmful optimizations and remove them in an iterative compila-
tion process. Combined Elimination provides good results, which
are close to those founded by an exhaustive search approach.
However, its drawback is the number of program runs. In this
paper, we proposed an iterative compilation algorithm, named
Improved Batch Elimination. This algorithm is based on the
first step towards Combined Elimination, the Batch Elimination
algorithm. The goal of Improved Batch Elimination is to produce
results similar to Combined Elimination, with a complexity
similar to Batch Elimination. In other words, the goal is to
produce good results and to be faster than Combined Elimination.
We evaluate our algorithm by measuring the performance of
SPEC CPU2006, POLYBENCH and CBENCH benchmarks under a
set of 63 LLVM compiler optimizations. The results indicate that
Improved Batch Elimination is a good strategy to remove harmful
compiler optimizations, using few program runs.

I. INTRODUCTION

Iterative compilation is a well-known strategy used to dis-
cover the best compiler optimization set to compile a specific
program, as well as to remove harmful optimizations from a
compiler optimization set [1], [2], [3], [4], [5]. In this approach,
the program is compiled with different compiler optimizations
sets, and the best version is chosen. Due to the diversity of sets
and the need to compile and run the program several times,
iterative algorithms try to cover the search space selectively.
Based on the behaviour of the search, the algorithms can
be classified into three categories: partial search algorithms,
random algorithm or genetic algorithms.

Partial search algorithms try to analyze a portion of all
possible solutions to find an optimization set that provides
the best performance for the test program [5], [6], [7], [8],
[9], [10], [11]. Random or statistical algorithms perform the
search employing statistical and randomization techniques, in
order to reduce the number of sets evaluated [12], [13], [14].
Genetic algorithms use random searches based on a set of

transformations to find a good optimization set [15], [16], [17],
[18], [19]. Besides, there is research that combines several
strategies [20].

In order to reduce the required program evaluations by
iterative compilations, machine learning techniques create in
an offline phase a prediction model, which will be used to
determine the compiler optimization set that should be used on
a test (unseen) program [4], [20], [21], [22], [23], [24], [25],
[26], [27], by the online phase. The main advantage of this
technique is that it reduces the number of required program
runs (evaluations), besides outperforms iterative compilation
strategies.

In the context of machine learning, the offline phase
collects pieces of information about a set of training programs
and downsamples the search space in order to provide a small
space, which can be handled by the online phase in a easy and
fast way. Based on the downsampled space and the pieces of
information, the offline phase creates a collection of previous
cases (the prediction model), which will be used to solve an
unseen case, i.e., to determine the compiler optimization set
that should be enabled by the compiler during the final code
generation. Online phase will infer from the cases provided by
the offline phase, the best compiler optimization set that fits
the features of the unseen program as defined by its input.

After collecting pieces of information about a set of
training programs, it is necessary to improve the quality
of the prediction model. Due to each information (compiler
optimization set) in the model can contain optimizations that
do not contribute to the program speedup or have a negative
impact on the program speedup (due to false interactions with
other optimizations). Therefore, we need to eliminate these
unnecessary optimizations.

In this context, an interesting algorithm is the work of
Pan and Eigenmann [5]. They have proposed an algorithm,
which identifies and removes harmful optimizations in an
iterative compilation process. In their work, Pan and Eigenman
presented three algorithms: Batch Elimination, Iterative Elim-
ination, and Combined Elimination. The first two algorithms
were steps towards Combined Elimination.

In their research, the authors showed that Combined Elim-
ination is efficient to remove harmful optimizations, and the

978-1-4673-9143-6/15/$31.00 2015 IEEE

2015 XLI Latin American Computing Conference (CLEI)

results are similar to an exhaustive search approach. However,
this algorithm complexity is O(n2). It means that Combined
Elimination can take up to n2 program runs (evaluations).

In this paper, we proposed an algorithm based on Batch
Elimination, which provides results similar to Combined Elim-
ination, named Improved Batch Elimination. Our algorithm
identifies and removes harmful optimizations in batch similar
to Batch Elimination.

We compare our algorithm with the three algorithms pro-
posed by Pan and Eigenmann on a set of benchmarks. For this
purpose, we use all SPEC CPU2006 benchmarks written in C
and C++ [28][29], all POLYBENCH benchmarks [30], and all
CBENCH benchmarks [31].

Using all LLVM [32] O2 optimizations, Improved Batch
Elimination is able to remove harmful optimizations, and
discover an optimization set that outperforms O2 on several
programs. Besides, Improved Batch Elimination outperforms
Pan and Eigenmann’s algorithms on several programs.

The remainder of this paper is organized as follows. Section
II describes the algorithms proposed by Pan and Eigenmann.
Section III describes the Improved Batch Elimination algo-
rithm. Section IV describes the experimental setup. Section
V presents the experimental results. Finally, the Section VI
presents the concluding remarks.

II. THE PAN AND EIGENMAN’S ALGORITHMS

Pan and Eigenmann [5] have proposed three algorithms
to find efficient compiler optimization sets: Batch Elimination
(BE), Iterative Elimination (IE), and Combined Elimination
(CE). The first two algorithms were steps towards CE. The
main objective of CE is to discover and remove harmful
optimizations from a baseline set.

The BE compiles the input program p using the baseline
set, runs the program, and saves its performance Pb (in this
case, the runtime). After that, BE disables each optimization
i (i = 1..n) from the baseline, one by one, compiles p using
each generated subset, and finally saves its performance Psi.
The final compiler optimizations set is formed by the baseline,
with all optimizations i where Psi < Pb disabled.

A limitation of BE is that it does not consider the effect
of interactions between the optimizations. The IE attempts
to address this limitation by disabling, on each step, only
the optimization that has the worst performance. Initially, the
performance using the baseline (Pb) and the subsets without
each optimization i (Psi) are obtained like BE. However, only
the optimization i with the worst performance Psi is removed.
This set of size n−1 is now the new baseline. In the next step,
IE tries to discover the worst optimization based on this new
baseline. This iterative process finishes when does not exist
harmful optimization in the baseline.

CE is a combination of the previous two algorithms. CE has
an iterative structure like IE. However in each iteration, CE
tries to eliminate several optimizations that produce negative
effects, like BE. CE evaluates the performance of the baseline
without each optimization. After that, the algorithm creates
an ordered list of all harmful optimizations. The optimization
with the worst performance, which is the first on the list, is

removed from the baseline, and the baseline is updated. The
new baseline is evaluated without each remaining optimization
of the list and all harmful optimizations are removed. The
whole iterative process finishes when does not exist harmful
optimizations in the baseline, as in IE.

III. THE IMPROVED BATCH ELIMINATION ALGORITHM

The BE uses an iterative process wherein each iteration it
tries to identify and remove harmful optimizations in batch.
The attractiveness of BE is to reduce the number of program
runs, removing the harmful optimization in only one step.
However, the disadvantage is the potential performance degra-
dation.

In this paper, we show that is possible to remove harmful
optimizations in batch in only one step similar to BE, deciding
which optimization to remove in a way similar to CE.

We proposed the Improved Batch Elimination (IBE) algo-
rithm, an efficient orchestration of compiler optimizations. The
main objective is to propose an algorithm that has performance
similar to CE, besides a complexity similar to BE.

The IBE is an improved version of BE, which uses a
different strategy to remove harmful optimizations. While
BE remove all harmful optimizations in batch, based on the
performance, IBE does the same, however based on a harmful
factor.

In IBE, each optimization that has negative performance
has a harmful factor. Intuitively, an optimization can be more
harmful than another one. Thus, the IBE uses this assumption
to remove only the most harmful optimizations, and not all
harmful optimizations like BE. The harmful factor considers
how much each optimization impact negatively the program.
In IBE, the probability of a given optimizations to be removed
is proportional to its harmful factor.

The harmful factor of optimization is 0, if the performance
of the baseline with this optimization enabled is better than
that with this optimization disabled. Otherwise, the factor is
the runtime of the program, when compiled with the baseline
without this optimization.

Based on the harmful factor, IBE calculates the probability
of an optimization to be removed. The probability of the most
harmful optimization is 1, and the others harmful optimizations
will receive proportional probabilities.

At this point, there is an important issue that has to
be addressed. Based on the probabilities, what optimizations
should be removed.

It is possible to generate a random number and remove
all optimization with probability greater than or equal to
this random number. However, it is easy to realize that it is
necessary several iterations to identify the best optimization
subset to remove from the baseline.

Considering that the random algorithm generates a dif-
ferent random number in each iteration, and some number
indicates the best optimization subset to remove in c iterations.
If c→∞ is possible to find a point in the interval [0, 1] that
provides the best result that can be searched by the random
algorithm.

2015 XLI Latin American Computing Conference (CLEI)

Based on this assumption, the problem can be reduced to
a simple search through this point. The IBE search this point
evaluating equidistant points in the interval [0, 1], according
to the number of iterations. Therefore, with c iterations, the
distance between these points is given by:

interval = 1
c−1

The interval value indicates that the distance between the
points is inversely proportional to the number of iteractions;
consequently there will be more points throughout the range.
The IBE is described in detail in Algorithm 1.

Algorithm 1: Improved Batch Elimination

Input: Program (P); Compiler Optimization Set (B);
Points (C)

Output: The best compiler optimization set (best set)
lenB ← |B|
best set← B
best time, timeB ← Execute(P,B) /* Compile P
with the optimizations set B, and execute P */
factor ← []
prob← []
for i← 1 to lenB do

prob.append(0)

for i← 1 to lenB do
Turn on all optimizations in B
Turn off the optimization i in B
timei ← Execute(P,B)
if timei < timeB then

factor[i]← timei

else
factor[i]← 0.0

M ← max(factor)
if M = 0 then

return B

for i← 1 to lenB do
if factor[i] > 0.0 then

prob[i]← factor[i]
M

else
prob[i]← 0.0

R← 0.0
interval← 1

C−1
for j ← 1 to C do

conj ← B
for each harmful optimization i do

if prob[i] ≥ R then
Turn off the optimization i in conj

if conj not evaluated then
timet ← Execute(P, conj)
if timet < best time then

best time← timet
best set← set

R← R+ interval

return best set

The IBE can be summarized as follows. Initialy, IBE
compiles the input program p using the baseline set, runs
the program, and saves its performance Pb. After that, IBE
disables each optimization i (i = 1..n) from the baseline, one
by one, compiles p using each generated subset, and finally
saves its performance Psi. After that, IBE analyzes c points
in the interval [0, 1] to discover what is the best optimization
subset to remove from the baseline.

We will show that IBE has a short tuning time, while
achieving comparable or better performance than CE.

IV. THE EXPERIMENTAL SETUP

The Platform The experiments are carried out on an Intel
x86 64 based machine, supporting a Core I7-3770 processors
running at 3.4GHz with an I&D L1, L2, L3 cache and RAM of
32K, 256K, 8M and 4GB, respectively. The operating system
on the machine was Ubuntu, running kernel 3.11.0-15-generic.

The Benchmark To evaluate the proposed solution, we use
all SPEC CPU2006 benchmarks [28] [29] written in C and
C++ with dataset train, all POLYBENCH benchmarks [30] large
dataset, and all CBENCH benchmarks [31] with dataset 1.

The Optimizations The experiments are conducted using
all LLVM version 3.4 [33] O2 optimizations. This compiler
optimization level is the baseline, based on several experiments
that indicated it achieves the best overall performance for
several benchmarks. The Figure 1 presents the LLVM O2

optimizations.

-targetlibinfo -no-aa -tbaa -basicaa -notti -globalopt -ipsccp -deadargelim
-instcombine -simplifycfg -basiccg -prune-eh -inline-cost -inline -
functionattrs -sroa -domtree -early-cse -lazy-value-info -jump-threading
-correlated-propagation -simplifycfg -instcombine -tailcallelim -simplifycfg -
reassociate -domtree -loops -loop-simplify -lcssa -loop-rotate -licm -lcssa -loop-
unswitch -instcombine -scalar-evolution -loop-simplify -lcssa -indvars -loop-
idiom -loop-deletion -loop-unroll -memdep -gvn -memdep -memcpyopt
-sccp -instcombine -lazy-value-info -jump-threading -correlated-propagation
-domtree -memdep -dse -adce -simplifycfg -instcombine -strip-dead-
prototypes -globaldce -constmerge -preverify -domtree -verify

Fig. 1. LLVM 3.4 O2 optimizations.

The Compilation Framework The compilation process for
each program represents the basic cycle performing in all
experiments. This process was accomplished with the LLVM

version 3.4, which is formed by a collection of tools.

The clang generates the LLVM’s intermediate represen-
tation without the use of any optimization. After, the opt
transforms the code by applying a compiler optimizations
set. Then, the llc generates from the optimized version, the
target assembly code. Finally, the tools as and ld generate the
executable.

The IBE Parameters There is only one parameter for IBE,
which is the number of points to evaluate c. We chose to
evaluate four values, namely: 5, 10, 20, and 30.

The Validation The validation of the results is based on the
average of several executions for each program’s instance. In
the experiments, the machine workload was minimum as pos-
sible, in other words, each instance was executed sequential.
Besides, the machine did not have external interference, and
the standard deviation of the results was less close to 0.0.

2015 XLI Latin American Computing Conference (CLEI)

Metrics The experimental evaluation use two metrics to eval-
uate the behavior of our algorithm.

1) Improvement: this metric indicates the program per-
formance, when the program is compiled with the
best optimizations set founded by the algorithm. The
improvement is calculated as follows:

Speedup =
baseline runtime

new runtime

Improvement = ((Speedup)− 1) ∗ 100

2) Evaluations: this metric indicates the number of pro-
gram runs performed by the algorithm.

V. THE EXPERIMENTAL EVALUATION

We compare our algorithm, IBE, with the three algorithms
developed by Pan and Eigenmann, namely: BE, IE and CE.
It is important to remember that BE and IE are steps towards
CE. We want to show that it is possible to have good results
using an algorithm which complexity is close to O(n).

A. Benchmark Performance

The Figures 2, 3 and 4 show the results of BE, IE,
CE and IBE in terms of improvement for SPEC CPU2006,
POLYBENCH and CBENCH benchmarks, respectively.

pe
rlb

en
ch

bz
ip

2

gc
c

m
cf

m
ilc

na
m

d

go
bm

k

de
al

II

so
pl

ex

po
vr

ay

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

Im
pr

ov
em

en
t

BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

-19.02

hm
m

er

sje
ng

lib
qu

an
tu

m

h2
64

re
f

lb
m

om
ne

tp
p

as
ta

r

sp
hi

nx
3

xa
la

nc
bm

k

G
eo

.M
ea

n-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

Im
pr

ov
em

en
t

BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

Fig. 2. Program performance achieved by the iterative compilation algo-
rithms relative to the LLVM optimization level O2 for the SPEC CPU2006
benchmarks.

The results indicate that IBE is a good strategy to find
effective optimization sets. CE outperformed IBE in 8 SPEC

CPU2006 benchmarks (perlbench, dealII, libquantum, namd,
povray, h264ref, lbm and xalancbmk), and IE in 4 programs
(gobmk, mcf, hmmer and sjeng). However, it is interesting to
note that only in 4 programs (perlbench, dealII, libquantum
and gobmk) the performance gap is not small. It means that in

2m
m

3m
m ad

i

at
ax

bi
cg

ch
ol

es
ky

co
rr

el
at

io
n

co
va

ria
nc

e

do
itg

en

du
rb

in

-4%

-2%

0%

2%

4%

6%

Im
pr

ov
em

en
t

BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

-47.51

dy
np

ro
g

fd
td

-2
d

fd
td

-a
pm

l

flo
yd

-w
ar

sh
al

l

ge
m

m

ge
m

ve
r

ge
su

m
m

v

gr
am

sc
hm

id
t

ja
co

bi
-1

d

ja
co

bi
-2

d

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

Im
pr

ov
em

en
t

BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

-10.12

lu

lu
dc

m
p

m
vt

re
g-

de
te

ct

se
id

el

sy
m

m

sy
r2

k

sy
rk

tri
so

lv

trm
m

G
eo

.M
ea

n-4%

-2%

0%

2%

4%

6%

8%

Im
pr

ov
em

en
t

BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

-13.30 -61.06

Fig. 3. Program performance achieved by the iterative compilation algorithms
relative to the LLVM optimization level O2 for the POLYBENCH benchmarks.

8 SPEC CPU2006 benchmars the performance of IBE is close
to the performance of CE and/or IE.

The better performance of POLYBENCH benchmarks is
related to the optimization sets founded by IBE. In this case,
IBE achieved the least performance only in 3 cases, namely:
3mm, adi and doitgen.

The performance of CBENCH benchmarks shows a be-
haviour similar to SPEC CPU2006 benchmarks. CE outper-
forms IBE in 6 programs (bitcount, qsort1, bzip2e, tiff2bw,
patricia and rsynth). IE outperforms IBE in 2 prograns
(susan e and dijkstra). BE outperforms IBE also in 2 programs
(susan s and jpeg d). However, only in 4 programs (bitcount,
bzip2e, patricia and dijkstra) the performance is not close to
the performance of Pan and Eigenmann’s algorithms.

As described in [5], BE is the worst algorithm. In several
cases, BE degrades the performance. It never occurs in IBE.
While BE ignores the interaction between optimizations, IBE
finds the relationship between them, and tries to discover the
worst subset to turn off.

IBE uses a different strategy from Pan and Eigenmann’s
algorithms, which is able to achieve comparable or better
performance than BE, IE and CE. IBE achieves good program

2015 XLI Latin American Computing Conference (CLEI)

di
js

kt
ra

pa
tri

ci
a

bl
ow

fis
h_

d

bl
ow

fis
h_

e

pg
p_

d

pg
p_

e

rij
nd

ae
l_

d

rij
nd

ae
l_

e

sh
a

bz
ip

2d

bz
ip

2e

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%
Im

pr
ov

em
en

t
BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

IBE(10): 64.12

IBE(20): 41.14

- 40.59 - 64.21

jp
eg

_c

jp
eg

_d

la
m

e

m
ad

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

gh
os

tsc
rip

t

rs
yn

th

str
in

gs
ea

rc
h1

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

Im
pr

ov
em

en
t

BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

-8.09 -23.76

IE: 21.72

IBE(10): 25.01

IBE(30): 22.06

bi
tc

ou
nt

qs
or

t

su
ca

n_
c

su
sa

n_
e

su
sa

n_
s

ad
pc

m
_c

ad
pc

m
_d

cr
c3

2

gs
m

G
eo

.M
ea

n-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

Im
pr

ov
em

en
t

BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

CE: 26.41
IE: 30.38

IBE(5): 23.75
IBE(10): 26.70
IBE(20): 25.42
IBE(30): 25.74

-11.08 -44.44

Fig. 4. Program performance achieved by the iterative compilation algorithms
relative to the LLVM optimization level O2 for the CBENCH benchmarks.

performance, improving BE. Like BE, IBE tries to remove
harmful optimizations in batch. Different from CE and IE,
IBE does not need complex iterative steps to discover harmful
optimizations.

CE outperforms IBE only in SPEC CPU2006 benchmarks.
The tendency of BE is significantly to degrade the perfor-
mance. The performance of IE never outperforms CE nor IBE.

The results indicate that evaluating different number of
points does not change the performance. It means that IBE
achieves consistent performance. On the other hand, it does
not occur in POLYBENCH and CBENCH benchmarks. The gap
in the results is 12.54% and 34.62% for POLYBENCH and
CBENCH, respectively.

This gap indicates that for POLYBENCH and CBENCH, IBE
is sensitive to the number of iterations. This is an undesirable
situation, because it is difficult to discover a specific number of
rounds that covers several programs. However, 10 interations
are a good choice.

The results show that the program performance is not
necessarily related to the length of the optimization set, but
it is related to the quality of the optimization set and the
characteristics of the program. The Table I shows the length

of the final set and its performance improvement. Besides,
this table shows two differents scenarios, namely: a marginal
improvement, and a significant improvement.

TABLE I. THE LENGTH AND THE IMPROVEMENT OF THE FINAL SET.

Benchmark Algorithm bzip2 mcf

SPEC CPU2006 BE 25 (0.51%) 24 (2.73%)

SPEC CPU2006 IE 60 (0.29%) 47 (9.55%)

SPEC CPU2006 CE 27 (0.59%) 35 (6.28%)

SPEC CPU2006 IBE(5) 62 (0.72%) 62 (7.26%)

SPEC CPU2006 IBE(10) 62 (0.71%) 62 (7.53%)

SPEC CPU2006 IBE(20) 62 (0.76%) 62 (7.36%)

SPEC CPU2006 IBE(30) 62 (0.76%) 62 (7.87%)

Benchmark Algorithm adi jacob1-1d

POLYBENCH BE 59 (-0.07%) 41 (9.72%)

POLYBENCH IE 53 (0.41%) 38 (11.11%)

POLYBENCH CE 22 (0.41%) 21 (7.33%)

POLYBENCH IBE(5) 62 (0.14%) 57 (10.49%)

POLYBENCH IBE(10) 63 (0%) 59 (11.88%)

POLYBENCH IBE(20) 56 (0.21%) 58 (14.29%)

POLYBENCH IBE(30) 63 (0%) 60 (12.68%)

Benchmark Algorithm blowfish e crc32

CBENCH BE 52 (0.35%) 55 (4.37%)

CBENCH IE 45 (0.41%) 42 (4.72%)

CBENCH CE 54 (0.41%) 2 (4.96%)

CBENCH IBE(5) 62 (0.29%) 62 (4.49%)

CBENCH IBE(10) 59 (0.35%) 58 (5.06%)

CBENCH IBE(20) 59 (0.41%) 51 (5.20%)

CBENCH IBE(30) 14 (0.41%) 62 (4.63%)

The programs bzip2, adi, and blowfish e show a situation
where it is difficult to achieve performance. Changing the way
of analyzing the interactions among the optimizations does not
change the program performance. The same occurs changing
the length of the optimization set.

A good benchmark performance was not obtained by the
largest optimization set. It is the case for mcf, jacobi-1d, and
crc32. It is interesting to note that CE founded a good small
optimization set for crc32.

These results indicate that it is necessary to consider the
characteristics of the program, in order to determine the real
interaction between the optimizations. Besides, relaxing the
way of finding such interaction is a good strategy. In some
cases, a good performance can be achieved turning off only
few optimizations, a task that does not need several iterative
compilations. This is the case of IBE.

The length of the final sets follows the behaviour showed
on Table I for all programs. However, there is a difference
in the algorithms. The final sets founded by IBE has more
optimizations than that founded by BE, IE, and CE.

B. The Number of Evaluations

The Figures 5, 6 and 7 show the results of BE, IE, CE and
IBE in terms of evaluations for SPEC CPU2006, POLYBENCH

and CBENCH, respectively.

The results show that IE is the slowest algorithm, followed
by CE. These algorithms need hundreds program evaluations
to find a good optimization set. The number of evaluations for
IE ranges from 128 to 1486, for SPEC CPU2006; from 65 to
1730, for POLYBENCH; and from 65 to 1781, for CBENCH.
CE needs less evaluations than IE. The number of evaluations
in CE ranges from 66 to 315, for SPEC CPU2006; from 66 to
501, for POLYBENCH; and from 66 to 433, for CBENCH.

2015 XLI Latin American Computing Conference (CLEI)

pe
rlb

en
ch

bz
ip

2

gc
c

m
cf

m
ilc

na
m

d

go
bm

k

de
al

II

so
pl

ex

po
vr

ay

0

200

400

600

800

1000

1200

1400
Ev

al
ua

tio
ns

BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

hm
m

er

sje
ng

lib
qu

an
tu

m

h2
64

re
f

lb
m

om
ne

tp
p

as
ta

r

sp
hi

nx
3

xa
la

nc
bm

k

G
eo

.M
ea

n

0

200

400

600

800

1000

Ev
al

ua
tio

ns

BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

Fig. 5. The number of evaluations of the iterative compilation algorithms
for SPEC CPU2006 benchmarks.

BE is the fastest algorithm. However, BE achieves the least
performance. This algorithm is O(n), which indicates it needs
n evaluations to find an optimizations set. BE needs only 65
evaluations: 1 to evaluate the baseline, 63 to evaluate each
optimization, and 1 to evaluate the final set.

BE is the lower bound on the number of evaluations,
describing an algorithm that does not explore the interaction
between optimizations. IE and CE, which explore the interac-
tion between the optimizations, represents the upper bound on
the number of evaluations.

As mentioned previously, the goal of this paper is to
propose an algorithm that has performance similar to CE,
besides a complexity similar to BE. Thus, on one hand we
want an algorithm similar to BE. However, on the other hand,
we want an algorithm similar to CE.

Excluding BE, IBE has the smaller number of evaluations,
according to its complexity, which is O(n + c). IBE needs
only 64 + c evaluations: 1 to evaluate the baseline, 63 to
evaluate each optimization, and c to evaluate the subsets. In
our experiments, we used 4 different values: 5, 10, 20, and 30.
This indicates that IBE needs up to 64+30 evaluations. Table
II summaries the results obtained by BE, CE, IE and IBE.

The number of evaluations for IBE(5) ranges from 65 to
69, for SPEC CPU2006; from 65 to 69, for POLYBENCH; and
from 65 to 69, for CBENCH. The number of evaluations for
IBE(10) ranges from 66 to 74, for SPEC CPU2006; from
65 to 74, for POLYBENCH; and from 65 to 74, for CBENCH.
The number of evaluations for IBE(20) ranges from 65 to
79, for SPEC CPU2006; from 65 to 84, for POLYBENCH; and
from 65 to 86, for CBENCH. The number of evaluations for
IBE(30) ranges from 67 to 85, for SPEC CPU2006; from 65
to 88, for POLYBENCH; and from 65 to 86, for CBENCH.

The number of evaluations indicate that the IBE complex-

2m
m

3m
m ad

i

at
ax

bi
cg

ch
ol

es
ky

co
rre

la
tio

n

co
va

ria
nc

e

do
itg

en

du
rb

in

0

200

400

600

800

1000

1200

1400

1600

1800

Ev
al

ua
tio

ns

BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

dy
np

ro
g

fd
td

-2
d

fd
td

-a
pm

l

flo
yd

-w
ar

sh
al

l

ge
m

m

ge
m

ve
r

ge
su

m
m

v

gr
am

sc
hm

id
t

ja
co

bi
-1

d

ja
co

bi
-2

d

0

200

400

600

800

1000

1200

1400

Ev
al

ua
tio

ns

BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

lu

lu
dc

m
p

m
vt

re
g-

de
te

ct

se
id

el

sy
m

m

sy
r2

k

sy
rk

tri
so

lv

trm
m

G
eo

.M
ea

n

0

200

400

600

800

1000

1200

1400

1600

Ev
al

ua
tio

ns

BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

Fig. 6. The number of evaluations of iterative compilation algorithms for
POLYBENCH benchmarks.

TABLE II. GEOMETRIC MEAN EVALUATIONS.

Benchmark Algorithm Evaluations

SPEC CPU2006 BE 65

SPEC CPU2006 IE 532

SPEC CPU2006 CE 230

SPEC CPU2006 IBE(5) 68

SPEC CPU2006 IBE(10) 71

SPEC CPU2006 IBE(20) 72

SPEC CPU2006 IBE(30) 76

POLYBENCH BE 65

POLYBENCH IE 532

POLYBENCH CE 221

POLYBENCH IBE(5) 68

POLYBENCH IBE(10) 70

POLYBENCH IBE(20) 73

POLYBENCH IBE(30) 75

CBENCH BE 65

CBENCH IE 545

CBENCH CE 196

CBENCH IBE(5) 68

CBENCH IBE(10) 69

CBENCH IBE(20) 73

CBENCH IBE(30) 72

ity is similar to BE. Besides, IBE is faster than IE and CE.
IBE is 7.4 times faster than IE for SPEC CPU2006, 7.5 times
for POLYBENCH, and 7.7 times for CBENCH; 3.2 times faster
than CE for SPEC CPU2006, 3.1 times for POLYBENCH, and

2015 XLI Latin American Computing Conference (CLEI)

di
jsk

tra

pa
tri

ci
a

bl
ow

fis
h_

d

bl
ow

fis
h_

e

pg
p_

d

pg
p_

e

rij
nd

ae
l_

d

rij
nd

ae
l_

e

sh
a

bz
ip

2d

bz
ip

2e

0

200

400

600

800

1000

1200

1400

1600

1800
Ev

al
ua

tio
ns

BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

jp
eg

_c

jp
eg

_d

la
m

e

m
ad

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

gh
os

tsc
rip

t

rs
yn

th

str
in

gs
ea

rc
h1

0

200

400

600

800

1000

1200

1400

Ev
al

ua
tio

ns

BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

bi
tc

ou
nt

qs
or

t

su
ca

n_
c

su
sa

n_
e

su
sa

n_
s

ad
pc

m
_c

ad
pc

m
_d

cr
c3

2

gs
m

G
eo

.M
ea

n

0

200

400

600

800

1000

1200

1400

1600

Ev
al

ua
tio

ns

BE
IE
CE
IBE(5)
IBE(10)
IBE(20)
IBE(30)

Fig. 7. The number of evaluations of the iterative compilation algorithms
for CBENCH benchmarks.

2.8 times for CBENCH.

The four algorithms have a different behaviour on each
benchmark. It means that the worst case (program) for an
algorithm is not necessarily the same for another one. On
SPEC CPU2006, the worst case for CE was omnetpp, for IE
was milc, for IBE(5) was astar, for IBE(10) was gobmk,
for IBE(20) was xalancbmk, and for IBE(30) was milc.
The same behaviour occurs in POLYBENCH and CBENCH,
due to the algorithms handle the interactions between the
optimizations in different ways.

The number of evaluations is not an indicative of perfor-
mance. The best performance obtained by the four algorithms
for SPEC CPU2006 was on h264ref; for POLYBENCH was
on jacobi-1d; and for CBENCH was on susan e. In these
cases the number of evaluations is not the lower bound nor
the upper bound. However, there are exceptions. IE achieves
better performance than CE on mcf, however it needs more
evaluations than CE. On the other hand, IBE achieves better
performance than CE, on this benchmark, using less evaluation
than CE.

BE, the fastest algorithm, achieves it speed at the cost of
performance degradation, a situation that does not occur on

IBE. The latter is as fast as BE, but it does not lose perfor-
mance. It indicates that the strategy of evaluating equidistant
points in the interval [0, 1], to discover what optimizations
should be removed, is an effective strategy to achieve per-
formance using a reduced number of evaluations.

VI. CONCLUDING REMARKS

Modern compilers provide levels of optimizations - usually
called, O0, O1, O2 and O3 - to optimize a program using a
predetermined compiler optimization set.

Despite of these level to improve the performance of
several benchmarks, the quality of the final code varies for each
program. It means that although the application of a compiler
optimization set can improve the performance of the program,
it does not guarantee that the final code is optimal. In addition,
not all programs compiled with the same compiler optimization
set will obtain a gain in performance.

The main difficulty in discovering the best compiler opti-
mization set for a specific program is related to the complex
relationship between optimizations. Besides, due to the number
of possible combinations, it is very difficult for the user to
select a set that provides good performance for your program.

The literature shows several researches, which goal is to
automate the process of choosing a good compiler optimization
set. Among these researches, machine learning techniques is
nowadays the best approaches. Although, it relies in expensive
processes to create the model, mainly to remove harmful
compiler optimizations from the model.

Combined Elimination is an effective algorithm to remove
harmful optimizations. However, at the cost of several program
runs. In this paper, we presented a new algorithm, Improved
Batch Elimination, based on a step towards Combined Elimi-
nation, Batch Elimination.

We evaluated our algorithm by measuring the performance
of SPEC CPU2006, POLYBENCH, and CBENCH benchmarks.
The results indicate that Improved Batch Elimination is a good
strategy to remove harmful optimizations, using few program
runs. Besides, Improved Batch Elimination, which complexity
is similar to Batch Elimination, provides results similar or
better than Combined Elimination. It indicates that Improved
Batch Elimination is a good strategy to be used during the
process of creating a prediction model.

2015 XLI Latin American Computing Conference (CLEI)

REFERENCES

[1] T. Kisuki, P. M. W. Knijnenburg, M. F. P. O’Boyle, F. Bodin, and
H. A. G. Wijshoff, “A feasibility study in iterative compilation,” in Pro-

ceedings of the Second International Symposium on High Performance

Computing. London, UK, UK: Springer-Verlag, 1999, pp. 121–132.

[2] T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. A. G. Wijshoff, “Iterative
compilation in program optimization,” in Proceedings in Compiler for

Parallel Computers, 2000, pp. 35–44.

[3] P. M. W. Knijnenburg, T. Kisuki, and M. F. P. O’Boyle, “Iterative
compilation,” in Embedded Processor Design Challenges: Systems,

Architectures, Modeling, and Simulation - SAMOS. London, UK, UK:
Springer-Verlag, 2002, pp. 171–187.

[4] E. Park, S. Kulkarni, and J. Cavazos, “An evaluation of different mod-
eling techniques for iterative compilation,” in Proceedings of the 14th

International Conference on Compilers, Architectures and Synthesis for

Embedded Systems. New York, NY, USA: ACM, 2011, pp. 65–74.

[5] Z. Pan and R. Eigenmann, “Fast and effective orchestration of compiler
optimizations for automatic performance tuning,” in Proceedings of

the International Symposium on Code Generation and Optimization.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 319–332.

[6] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff, “Automatic
Selection of Compiler Options Using Non-parametric Inferential Statis-
tics,” in Proceedings of the 14th International Conference on Parallel

Architectures and Compilation Techniques. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 123–132.

[7] G. G. Fursin, M. F. P. O’Boyle, and P. M. W. Knijnenburg, “Evaluating
iterative compilation,” in Proceedings of the 15th International Confer-

ence on Languages and Compilers for Parallel Computing. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 362–376.

[8] S. V. Gheorghita, H. Corporaal, and T. Basten, “Iterative compilation
for energy reduction,” Journal of Embedded Computing, vol. 1, no. 4,
pp. 509–520, Dec. 2005.

[9] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. Davidson, “Prac-
tical exhaustive optimization phase order exploration and evaluation,”
ACM Transactions on Architecture and Code Optimization, vol. 6, no. 1,
pp. 1–36, Apr. 2009.

[10] J. H. Foleiss, A. F. da Silva, and L. B. Ruiz, “The Effect of Combining
Compiler Optimizations on Code Size,” in Proceedings of the Interna-

tional Conference of the Chilean Computer Science Society. Curicó,
Chile: Sociedad Chilena de Ciencias de la Computación, 2011, pp. 1–8.

[11] ——, “An Experimental Evaluation of Compiler Optimizations on Code
Size,” in Proceedings of the Brazilian Symposium on Programming

Languages. São Paulo, São Paulo, Brazil: EACH USP, 2011, pp.
1–15.

[12] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff, “Generating
new general compiler optimization settings,” in Proceedings of the 19th

Annual International Conference on Supercomputing. New York, NY,
USA: ACM, 2005, pp. 161–168.

[13] L. Shun and G. Fursin, “A heuristic search algorithm based on unified
transformation framework,” in International Conference Workshops on

Parallel Processing, 2005, pp. 137–144.

[14] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian,
L. Torczon, and T. Waterman, “Exploring the structure of the space of
compilation sequences using randomized search algorithms,” Journal of

Supercomputing, vol. 36, no. 2, pp. 135–151, May 2006.

[15] K. D. Cooper, D. Subramanian, and L. Torczon, “Adaptive optimizing
compilers for the 21st century,” Journal of Supercomputing, vol. 23,
no. 1, pp. 7–22, Aug. 2002.

[16] W. Zhao, B. Cai, D. Whalley, M. W. Bailey, R. van Engelen, X. Yuan,
J. D. Hiser, J. W. Davidson, K. Gallivan, and D. L. Jones, “Vista: A
system for interactive code improvement,” in Proceedings of the Joint

Conference on Languages, Compilers and Tools for Embedded Systems:

Software and Compilers For Embedded Systems. New York, NY, USA:
ACM, 2002, pp. 155–164.

[17] P. A. Kulkarni, S. R. Hines, D. B. Whalley, J. D. Hiser, J. W.
Davidson, and D. L. Jones, “Fast and efficient searches for effective
optimization-phase sequences,” ACM Transactions on Architecture and

Code Optimization, vol. 2, no. 2, pp. 165–198, Jun. 2005.

[18] Y. Che and Z. Wang, “A lightweight iterative compilation approach
for optimization parameter selection,” in First International Multi-

Symposiums on Computer and Computational Sciences, vol. 1. Wash-
ington, DC, USA: IEEE Computer Society, 2006, pp. 318–325.

[19] Y.-Q. Zhou and N.-W. Lin, “A study on optimizing execution time and
code size in iterative compilation,” in Third International Conference

on Innovations in Bio-Inspired Computing and Applications, 2012, pp.
104–109.

[20] S. Purini and L. Jain, “Finding good optimization sequences covering
program space,” ACM Transactions on Architecture and Code Optimiza-

tion, vol. 9, no. 4, pp. 56:1–56:23, Jan. 2013.

[21] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P.
O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams, “Using
machine learning to focus iterative optimization,” in Proceedings of

the International Symposium on Code Generation and Optimization.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 295–305.

[22] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle,
and O. Temam, “Rapidly selecting good compiler optimizations using
performance counters,” in Proceedings of the International Symposium

on Code Generation and Optimization. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 185–197.

[23] J. Cavazos and M. F. P. O’Boyle, “Method-specific dynamic compilation
using logistic regression,” ACM SIGPLAN Notices, vol. 41, no. 10, pp.
229–240, Oct. 2006.

[24] M. R. Jantz and P. A. Kulkarni, “Performance potential of optimization
phase selection during dynamic jit compilation,” in Proceedings of

the 9th ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments. New York, NY, USA: ACM, 2013, pp. 131–
142.

[25] S. Long and M. O’Boyle, “Adaptive java optimisation using instance-
based learning,” in Proceedings of the 18th Annual International

Conference on Supercomputing. New York, NY, USA: ACM, 2004,
pp. 237–246.

[26] A. M. Malik, “Spatial based feature generation for machine learning
based optimization compilation,” in Proceedings of the Ninth Interna-

tional Conference on Machine Learning and Applications. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 925–930.

[27] J. Thomson, M. O’Boyle, G. Fursin, and B. Franke, “Reducing training
time in a one-shot machine learning-based compiler,” in Proceedings

of the 22nd International Conference on Languages and Compilers for

Parallel Computing. Berlin, Heidelberg: Springer-Verlag, 2010, pp.
399–407.

[28] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH

Computer Architecture News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[29] S. Team, “Standard performance evaluation corporation,”
http://www.spec.org, 2015, online; accessed 05-August-2005.

[30] L.-N. Pouchet, “Polyhedral benchmark suite,”
http://www.cs.ucla.edu/ pouchet/software/polybench/, 2015, online;
accessed 05-August-2005.

[31] cBench., “The collective benchmarks,”
http://ctuning.org/wiki/index.php/CTools:CBench, 2015, online;
accessed 05-August-2005.

[32] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International

Symposium on Code Generation and Optimization. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 75–.

[33] L. Team, “The llvm compiler infrastructure,” http://llvm.org, 2015,
online; accessed 05-August-2005.

